Электронная геометрическая модель объекта в дизайне. Основные виды геометрических моделей Виды геометрических моделей

При решении большинства задач в области автоматизированного конструирования (К) и технологической подготовки производства (ТПП) надо иметь модель объекта проектирования.

Под моделью объекта понимают его некоторое абстрактное представление, удовлетворяющее условию адекватности этому объекту и позволяющее осуществлять его представление и обработку с помощью компьютера.

Т.о. модель – набор данных, отображающих свойства объекта и совокупность отношений между этими данными.

В модель объекта ПР в зависимости от характера ее исполнения может входить ряд разнообразных характеристик и параметров. Чаще всего модели объектов содержат данные о форме объекта, его размерах, допусках, применяемых материалах, механических, электрических, термодинамических и других характеристиках, способах обработки, стоимости, а также о микрогеометрии (шероховатость, отклонения формы, размеров).

Для обработки модели в графических системах САПР существенным является не весь объем информации об объекте, а та часть, которая определяет его геометрию, т.е. формы, размеры, пространственное размещение объектов.

Описание объекта с точки зрения его геометрии называется геометрической моделью объекта .

Но геометрическая модель может в себя включать еще и некоторую технологическую и вспомогательную информацию.

Информация о геометрических характеристиках объекта используется не только для получения графического изображения, но и для расчетов различных характеристик объекта (например, по МКЭ), для подготовки программ для станков с ЧПУ.

В традиционном процессе конструирования обмен информацией осуществляется на основе эскизных и рабочих чертежей с использованием нормативно-справочной и технической документации. В САПР этот обмен реализуется на основе внутримашинного представления объекта.

Под геометрическим моделированием понимают весь многоступенчатый процесс – от вербального (словесного) описания объекта в соответствии с поставленной задачей до получения внутримашинного представления объекта.

В системах геометрического моделирования могут обрабатываться 2-мерные и 3-хмерные объекты, которые в свою очередь могут быть аналитически описываемыми и неописываемыми. Аналитически неописываемые геометрические элементы, такие как кривые и поверхности произвольной формы, используются преимущественно при описании объектов в автомобиле-, самолето- и судостроении.


Основные виды ГМ

2-мерные модели , которые позволяют формировать и изменять чертежи, были 1-ми моделями, нашедшими применение. Такое моделирование часто применяется и до сих пор, т.к. оно намного дешевле (в отношении алгоритмов, использования) и вполне устраивает промышленные организации при решении разнообразных задач.

В большинстве 2-мерных систем геометрического моделирования описание объекта осуществляется в интерактивном режиме в соответствии с алгоритмами, аналогичными алгоритмам традиционного метода конструирования. Расширением таких систем является то, что контурам или плоским поверхностям ставится в соответствие постоянная или переменная глубина изображения. Системы, работающие по такому принципу, называется 2,5-мерными. Они позволяют получать на чертежах аксонометрические проекции объектов.

Но 2-мерное представление часто не удобно для достаточно сложных изделий. При традиционных способах конструирования (без САПР) пользуются чертежами, где изделие может быть представлено несколькими видами. Если изделие очень сложное, его можно представить в виде макета. 3-хмерная модель служит для того, чтобы создать виртуальное представление изделия во всех 3-х измерениях.

Различают 3 вида 3-хмерных моделей:

· каркасные (проволочные)

· поверхностные (полигональные)

· объемные (модели сплошных тел).

· Исторически 1-ми явились каркасные модели . В них хранятся только координаты вершин (x,y,z ) и соединяющие их ребра.

На рисунке видно, как куб может быть воспринят неоднозначно.


Т.к. известны только ребра и вершины, возможны различные интерпретации одной модели. Каркасная модель проста, но с ее помощью можно представить в пространстве только ограниченный класс деталей, в которых аппроксимирующие поверхности являются плоскостями. На основе каркасной модели можно получать проекции. Но невозможно автоматически удалять невидимые линии и получать различные сечения.

· Поверхностные модели позволяют описывать достаточно сложные поверхности. Поэтому они часто соответствует нуждам промышленности (самолето-, судо-, автомобилестроение) при описании сложных форм и работе с ними.

При построении поверхностной модели предполагается, что объекты ограничены поверхностями, которые отделяют их от окружающей среды. Поверхность объекта тоже становится ограниченной контурами, но эти контуру являются результатом 2-х касающихся или пересекающихся поверхностей. Вершины объекта могут быть заданы пересечением поверхностей, множеством точек, удовлетворяющих какому-то геометрическому свойству, в соответствии с которым определяется контур.

Возможны различные виды задания поверхностей (плоскости, поверхности вращения, линейчатые поверхности). Для сложных поверхностей используются различные математические модели аппроксимации поверхностей (методы Кунса, Безье, Эрмита, В-сплайна). Они позволяют изменять характер поверхности с помощью параметров, смысл которых доступен пользователю, не имеющему специальной математической подготовки.


Аппроксимация поверхностей общего вида плоскими гранями дает преимущество: для обработки таких поверхностей используются простые математические методы. Недостаток: сохранение формы и размеров объекта зависит от числа граней, используемых для аппроксимаций. Чем > число граней, тем < отклонение от действительной формы объекта. Но с увеличением числа граней одновременно увеличивается и объем информации для внутримашинного представления. Вследствие этого увеличивается как время на работу с моделью объекта, так и объем памяти для хранения модели.

· Если для модели объекта существенно разграничение точек на внутренние и внешние, то говорят об объемных моделях . Для получения таких моделей сначала определяются поверхности, окружающие объект, а затем они собираются в объемы.

В настоящее время известны следующие способы построения объемных моделей:

· В граничных моделях объем определяется как совокупность ограничивающих его поверхностей.

Структура может быть усложнена внесением действий переноса, поворота, масштабирования.

Достоинства:

¾ гарантия генерации правильной модели,

¾ большие возможности моделирования форм,

¾ быстрый и эффективный доступ к геометрической информации (например, для прорисовки).

Недостатки :

¾ больший объем исходных данных, чем при CSG способе,

¾ модель логически < устойчива, чем при CSG, т.е. возможны противоречивые конструкции,

¾ сложности построения вариаций форм.

· В CSG-моделях объект определяется комбинацией элементарных объемов с использованием геометрических операций (объединение, пересечение, разность).

Под элементарным объемом понимается множество точек в пространстве.

Моделью такой геометрической структуры является древовидная структура. Узлы (нетерминальные вершины) – операции, а листья – элементарные объемы.

Достоинства:

¾ концептуальная простота,

¾ малый объем памяти,

¾ непротиворечивость конструкции,

¾ возможность усложнения модели,

¾ простота представления частей и сечений.

Недостатки:

¾ ограничение рамками булевых операций,

¾ вычислительноемкие алгоритмы,

¾ невозможность использовать параметрически описанных поверхностей,

¾ сложность при работе с функциями > чем 2-го порядка.

· Ячеечный метод. Ограниченный участок пространства, охватывающий весь моделируемый объект, считается разбитым на большое число дискретных кубических ячеек (обычно единичного размера).

Моделирующая система должна просто записать информацию о принадлежности каждого куба объекту.

Структура данных представляется 3-хмерной матрицей, в которой каждый элемент соответствует пространственной ячейке.

Достоинства:

¾ простота.

Недостатки:

¾ большой объем памяти.

Для преодоления этого недостатка используют принцип разбиения ячеек на подъячейки в особо сложных частях объекта и на границе.

Объемная модель объекта, полученная любым способом, является корректной, т.е. в данной модели нет противоречий между геометрическими элементами, например, отрезок не может состоять из одной точки.

Каркасное представление м.б. использовано не при моделировании, а при отражении моделей (объемных или поверхностных) как один из методов визуализации.

    геометрическая модель - геометрическая модель; отрасл. макет Модель, находящаяся в отношении геометрического подобия к моделируемому объекту … Политехнический терминологический толковый словарь

    геометрическая модель - Нрк макет Модель, находящаяся в отношении геометрического подобия к моделируемому объекту. [Сборник рекомендуемых терминов. Выпуск 88. Основы теории подобия и моделирования. Академия наук СССР. Комитет научно технической терминологии. 1973 г.]… …

    Геометрическая модель местности - (фототопография) совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков... Источник: ГОСТ Р 52369 2005. Фототопография. Термины и определения (утв. Приказом… … Официальная терминология

    геометрическая модель местности (фототопография) - Совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков. [ГОСТ Р 52369 2005] Тематики фототопография Обобщающие термины виды топографических фотоснимков и их… … Справочник технического переводчика

    геометрическая модель местности - 37 геометрическая модель местности (фототопография): Совокупность точек пересечения соответственных проектирующих лучей, полученная по стереопаре ориентированных топографических фотоснимков. Источник: ГОСТ Р 52369 2005: Фототопография. Термины и… …

    электронная геометрическая модель (геометрическая модель) - электронная геометрическая модель (геометрическая модель): Электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров. [ГОСТ 2.052 2006, статья 3.1.2] Источник … Словарь-справочник терминов нормативно-технической документации

    Электронная геометрическая модель изделия - Электронная геометрическая модель (геометрическая модель): электронная модель изделия, описывающая геометрическую форму, размеры и иные свойства изделия, зависящие от его формы и размеров... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ.… … Официальная терминология

    Абстрактное или вещественное отображение объектов или процессов, адекватное исследуемым объектам (процессам) в отношении некоторых заданных критериев. Напр., математическая модель слоенакопления (абстрактная модель процесса), блок диаграмма… … Геологическая энциклопедия

    Модель изделия каркасная - Каркасная модель: трехмерная электронная геометрическая модель, представленная пространственной композицией точек, отрезков и кривых, определяющих в пространстве форму изделия... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. ЭЛЕКТРОННАЯ… … Официальная терминология

    Модель изделия поверхностная - Поверхностная модель: трехмерная электронная геометрическая модель, представленная множеством ограниченных поверхностей, определяющих в пространстве форму изделия... Источник: ЕДИНАЯ СИСТЕМА КОНСТРУКТОРСКОЙ ДОКУМЕНТАЦИИ. ЭЛЕКТРОННАЯ МОДЕЛЬ… … Официальная терминология

    Модель изделия твердотельная - Твердотельная модель: трехмерная электронная геометрическая модель, представляющая форму изделия как результат композиции заданного множества геометрических элементов с применением операций булевой алгебры к этим геометрическим элементам...… … Официальная терминология

Книги
  • Адаптивная норма человека. Симметрия и волновой порядок электрофизиологических процессов , Н. В. Дмитриева. В настоящей работе дан новый подход к определению адаптивной нормы человека на основе обобщения опыта работы полипараметрических когнитивных моделей разных физиологических процессов…
  • Теория реальной относительности , Е. А. Губарев. В первой части книги на основе пространства событий четырехмерных ориентируемых точек описана относительность неинерциальных (ускоренных и вращающихся) систем отсчета, связанных с реальными…

Геометрическое моделирование

Векторная и растровая графика.

Графика бывает двух видов - векторная и растровая. Основное отличие - в принципе хранения изображения. Векторная графика описывает изображение с помощью математических формул. Основное преимущество векторной графики состоит в том, что при изменении масштаба изображения оно не теряет своего качества. Отсюда следует и еще одно преимущество - при изменении размеров изображения не изменяется размер файла.Растровая графика - это прямоугольная матрица, состоящая из множества очень мелких неделимых точек (пикселей).

Растровое изображение можно сравнить с детской мозаикой, когда картинка составляется из цветных квадратиков. Компьютер запоминает цвета всех квадратиков подряд в определенном порядке. Поэтому растровые изображения требуют для хранения большего объема памяти. Их сложно масштабировать и еще сложнее редактировать. Чтобы увеличить изображение, приходится увеличивать размер квадратиков, и тогда рисунок получается "ступенчатым". Для уменьшения растрового рисунка приходится несколько соседних точек преобразовывать в одну или выбрасывать лишние точки. В результате изображение искажается, его мелкие детали становятся неразборчивыми. Этих недостатков лишена векторная графика. В векторных редакторах рисунок запоминается как совокупность геометрических фигур - контуров, представленных в виде математических формул. Чтобы пропорционально увеличить объект, достаточно просто изменить одно число: коэффициент масштабирования. Никаких искажений ни при увеличении, ни при уменьшении рисунка не возникает. Поэтому, создавая рисунок, вы можете не думать о его конечных размерах - вы всегда можете изменить их.

Геометрические преобразования

Ве́кторная гра́фика - это использование геометрических примитивов, таких как точки, линии, сплайны и многоугольники, для представления изображений в компьютерной графике. Рассмотрим, к примеру, окружность радиуса r. Список информации, необходимой для полного описания окружности, таков:



радиус r ;

координаты центра окружности;

цвет и толщина контура (возможно прозрачный);

цвет заполнения (возможно прозрачный).

Преимущества этого способа описания графики над растровой графикой:

Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта).

Соответственно, можно бесконечно увеличить, например, дугу окружности, и она останется гладкой. С другой стороны, если кривая представлена в виде ломаной линии, увеличение покажет, что она на самом деле не кривая.

При увеличении или уменьшении объектов толщина линий может быть постоянной.

Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка. Более того, обычно указывают размеры в аппаратно-независимых единицах ((англ.)), которые ведут к наилучшей возможной растеризации на растровых устройствах.

У векторной графики есть два фундаментальных недостатка.

Не каждый объект может быть легко изображен в векторном виде. Кроме того, количество памяти и времени на отображение зависит от числа объектов и их сложности.

Перевод векторной графики в растр достаточно прост. Но обратного пути, как правило, нет - трассировка растра обычно не обеспечивает высокого качества векторного рисунка.

Векторные графические редакторы, типично, позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять основные аффинные преобразования над объектами, изменять z-order и комбинировать примитивы в более сложные объекты.

Более изощрённые преобразования включают булевы операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д.

Векторная графика идеальна для простых или составных рисунков, которые должны быть аппаратно-независимыми или не нуждаются в фотореализме. К примеру, PostScript и PDF используют модель векторной графи

Линии и ломаные линии.

Многоугольники.

Окружности и эллипсы.

Кривые Безье.

Безигоны.

Текст (в компьютерных шрифтах, таких как TrueType, каждая буква создаётся из кривых Безье).

Этот список неполон. Есть разные типы кривых (Catmull-Rom сплайны, NURBS и т.д.), которые используются в различных приложениях.

Также возможно рассматривать растровое изображение как примитивный объект, ведущий себя как прямоугольник.

Основные виды геометрических моделей

Геометрические модели дают внешнее представление об объекте-оригинале и характеризуются одинаковыми с ним пропорциями геометрических размеров. Эти модели подразделяются на двумерные и трехмерные. Эскизы, схемы, чертежи, графики, живописные работы представляют собой примеры двумерных геометрических моделей, а макеты зданий, автомобилей, самолетов и т.д. – это трехмерные геометрические модели.

Трёхмерная графика оперирует с объектами в трёхмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трёхмерная компьютерная графика широко используется в кино, компьютерных играх.

В трёхмерной компьютерной графике все объекты обычно представляются как набор поверхностей или частиц. Минимальную поверхность называют полигоном. В качестве полигона обычно выбирают треугольники.

Всеми визуальными преобразованиями в 3D-графике управляют матрицы (см. также: аффинное преобразование в линейной алгебре). В компьютерной графике используется три вида матриц:

матрица поворота

матрица сдвига

матрица масштабирования

Любой полигон можно представить в виде набора из координат его вершин. Так, у треугольника будет 3 вершины. Координаты каждой вершины представляют собой вектор (x, y, z). Умножив вектор на соответствующую матрицу, мы получим новый вектор. Сделав такое преобразование со всеми вершинами полигона, получим новый полигон, а преобразовав все полигоны, получим новый объект, повёрнутый/сдвинутый/промасштабированный относительно исходного

Подсистемы машинной графики и геометрического моделирования (МГиГМ) занимают центральное место в машиностроительных САПР-К. Конструирование изделий в них, как правило, проводится в интерактивном режиме при оперировании геометрическими моделями, т.е. математическими объектами, отображающими форму деталей, состав сборочных узлов и возможно некоторые дополнительные параметры (масса, момент инерции, цвета поверхности и т.п.).

В подсистемах МГиГМ типичный маршрут обработки данных включает в себя получение проектного решения в прикладной программе, его представление в виде геометрической модели (геометрическое моделирование), подготовку проектного решения к визуализации, собственно визуализацию в аппаратуре рабочей станции и при необходимости корректировку решения в интерактивном режиме. Две последние операции реализуются на базе аппаратных средств машинной графики . Когда говорят о математическом обеспечении МГиГМ, имеют в виду прежде всего модели, методы и алгоритмы для геометрического моделирования и подготовки к визуализации. При этом часто именно математическое обеспечение подготовки к визуализации называют математическим обеспечением машинной графики.

Различают математическое обеспечение двумерного (2D) и трехмерного (3D) моделирования. Основные применения 2D-графики — подготовка чертежной документации в машиностроительных САПР , топологическое проектирование печатных плат и кристаллов БИС в САПР электронной промышленности. В развитых машиностроительных САПР используют как 2D, так и 3D моделирование для синтеза конструкций, представления траекторий рабочих органов станков при обработке заготовок, генерации сетки конечных элементов при анализе прочности и т.п.

В процессе 3D моделирования создаются геометрические модели , т.е. модели, отражающие геометрические свойства изделий. Различают геометрические модели каркасные (проволочные), поверхностные, объемные (твердотельные).

Каркасная модель представляет форму детали в виде конечного множества линий, лежащих на поверхностях детали. Для каждой линии известны координаты концевых точек и указана их инцидентность ребрам или поверхностям. Оперировать каркасной моделью на дальнейших операциях маршрутов проектирования неудобно, и поэтому каркасные модели в настоящее время используют редко.

Поверхностная модель отображает форму детали с помощью задания ограничивающих ее поверхностей, например, в виде совокупности данных о гранях, ребрах и вершинах.

Особое место занимают модели деталей с поверхностями сложной формы, так называемыми скульптурными поверхностями . К таким деталям относятся корпуса многих транспортных средств (например, судов, автомобилей), детали, обтекаемые потоками жидкостей и газов (лопатки турбин, крылья самолетов), и др.

Объемные модели отличаются тем, что в них в явной форме содержатся сведения о принадлежности элементов внутреннему или внешнему по отношению к детали пространству.

Рассмотренные модели отображают тела с замкнутыми объемами, являющиеся так называемыми многообразиями (manifold). Некоторые системы геометрического моделирования допускают оперирование немногообразными моделями (nonmanifold), примерами которых могут быть модели тел, касающихся друг друга в одной точке или вдоль прямой. Немногообразные модели удобны в процессе конструирования, когда на промежуточных этапах полезно работать одновременно с трехмерными и двумерными моделями, не задавая толщины стенок конструкции, и т.п.

Электронная геометрическая модель объекта в дизайне

E-mail: *****@***ru

В настоящее время большинство предприятий применяют информацион­ные тех­нологии в проектной деятельности , основой ко­торых является создание объекта дизайн-проекта. Электронная геометрическая модель лежит в основе современной дизайнерской и технической документации на объект проекта. Модель содержит полную информацию о геометрических параметрах, свойствах формы объекта и является исходным данным для генерации программного кода для производственного оборудования. Для достижения художественной выразительности объекта дизайн-проекта посредством современных информационных тех­нологий требуется от дизайнера правильная квалифицированная организация их элементов. Изложенное вы­яв­ляет актуаль­ность определения конструктивно-технологических требований к качеству электронной геометриче­ской модели объекта дизайн-проекта и ее места в проектном моделировании.

Проектное моделирование в дизайне с электронной геометриче­ской модели объекта дизайн-проекта классифицируется по следующим критериям (рисунок): форма, способ, средство, результат и функция проектного моделирования.

Рисунок – Электронная геометрическая модель в проектном моделировании

В процессе опытных проектно-конструкторских работ определены требо­вания к качеству и точности построения электронной геометриче­ской модели объекта дизайн-проекта, которые представлены в таблице.


Таблица – Конструктивно-технологические требования к качеству и точности

построения электронной геометриче­ской модели объекта дизайн-проекта

Наименование требования

Характеристика

Нормативные требования к

ГОСТ 2. «ЕСКД. Электронные до­ку­менты. Общие положе­ния»;

ГОСТ 2. «ЕСКД. Электронная мо­дель изделия. Общие поло­жения»;

ГОСТ 2. «ЕСКД. Электронная структура изделия. Общие по­ложения»

электронной геометрической модели

Твердотельный (solid);

По­верхностный (surface);

Каркасный (curve)

Применяемые

программные системы для создания

электронной геомет­рической модели

CAD-системы (Сomputer Aided Design);

CAE-системы (Сomputer Aided Engineering);

САМ-системы (Сomputer Aided Manufacturing)

Параметры

электронной геометрической модели

Стандартное графическое отображение модели – модель формата сис­темы, в которой создана мо­дель и модель формата IGES, STP (единые ме­жду­народные стандарты хранения электронной ин­формации);

Единицы измерения – мм;

Рабочий масштаб – 1:1;

Параметры точности модели – линейный допуск 0,005 мм и угловой допуск 0,1°;

Максимальный размер модели – 20000 мм;

Электронная геометрическая модель, разрабо­танная сторон­ними исполнителями, применяются в дальнейшей работе с собственными па­рамет­рами

Объ­ем файла

электронной геометрической модели

Не допускать применение геометрически совпа­дающих элементов построения в пределах линей­ных и угловых допусков;

Не допускать включенные элементы анализа геометрии и закраску элементов геометрии в мо­дели;

Модель должна содержать логичную топологию (иметь четкие основ­ные образующие поверхности, скругления и фаски)

Качество топологии

электронной геометриче­ской модели

Не допускать применение немонотонных поверх­ностей, имеющих из­ломы и негладкие образующие линии (за исключением специальных случаев);

Для моделей, описанных поверхностью, не до­пускать разрывы между элементами и самопере­сечения элементов;

В геометрии модели должны отсутствовать разрывы с линейным допуском 0,005 мм и угловым допуском 0,1°;

Максимальное расхождение модели с результа­тами обмеров – 0,02 мм;

Максимальное расхождение установочных (кон­трольных) точек мо­дели с имеющейся чертежной документацией – 0,02 мм;

Логичная топология модели (поверхности и скругления между ними) с отсутствием поверхно­стей со сложной геометрией

Система координат расположения

электронной геометриче­ской модели

Координатная сетка электронной геометрической модели в программной системе должна быть пози­ционирована относительно предполагаемой техно­логической оснастки (установки)

Применение слоев в структуре

электронной геометриче­ской модели

Для различных вариантов формы объекта в формате системы, в которой построена модель, применять определенные схемы размещения информации по слоям

Обозначение файла

электронной геометрической модели

Применение определенной схемы обозначения файла электронной геометрической модели согласно корпоративным требованиям

описания поверхности объекта в электронной геометрической мо­дели

Описание поверхности в геометрической модели должно содержать полную информацию о форме объекта;

По согласованию с заказчиком допускается разра­ботка «частичных» электронных геометриче­ских моделей, кото­рые не содержат полного опи­сания формы объекта;

Для форм, получаемых листовой штамповкой, разрабатывается электронная геометрическая мо­дель только на одну поверхность, совпадающую с поверхностью, представленной на чертеже;

Для форм, получаемых литьем, формовкой, объемной штамповкой и листовой штамповкой, форм из стекла, толщина материала в которых более 2,5 мм, должна быть разработана электронная геометри­ческая модель на обе поверхности формы

Классифицирована электронная геометриче­ская модель объекта дизайн-проекта в проектном моделировании и определены для электронной геометриче­ской модели форма, способ, интеграция с другими способами, средство, результат, функция проектного моделирования. Определены конструктивно-технологические требования к качеству и точности построения электронной геометриче­ской модели объекта дизайн-проекта для обеспечения эффективного учебного и профессионального дизайн-проектирования в аспекте последующей под­готовки к производству.