Железо физические свойства и применение. Химические свойства железа и его соединений, их применение

– составная гемоглобина. Этот сложный белок входит в эритроциты, известные так же как красные кровяные тельца. Без них, собственно, кровь не была бы алой, да и жизни бы не было.

Эритроциты транспортируют по организму углекислый газ и кислород. Они необходимы для жизнедеятельности. А для чего еще необходимо железо , каковы его свойства и стоимость в прямом и переносном смыслах?

Химические и физические свойства железа

Дотрагивались до железа в прохладном помещении? Холод от прикосновения к металлу – результат его высокой теплопроводности. Материал моментально забирает энергию тела, передавая ее окружающей среде. В результате, человеку становится холодно.

Электропроводность железа тоже на высоте. Металл с легкостью передает ток благодаря свободным электронам в атоме. В нем 7 слоев. На последних 2-х расположены 8 электронов. При возбуждении все они могут быть валентными, то есть способными образовать новые связи.

Внешне металл железо серебристо-серый. Встречаются самородные формы. Чистое железо пластичное и ковкое. У выраженный металлический блеск и средняя твердость – 4 балла по . 10 баллов – показатель самого твердого на земле камня алмаз, а 1-им баллом отмечен тальк.

Железо – элемент средней тугоплавкости. Закипает металл при 2860-ти градусах, а размягчается при 1539-ти. В таком состоянии материал теряет ферромагнитные свойства. Они присущи лишь твердому состоянию железа. Элемент становится магнитом, попадая в поле.

Но, интереснее то, что после его исчезновения, металл еще долгое время остается магнитом. Такая особенность обусловлена все теми же свободными электронами в структуре атома. Перемещаясь, частицы меняют его строение и свойства.

Железо – химический элемент , легко вступающий в реакции с бромом, фтором, хлором и другими галогенами. Это элементы 17-ой группы таблицы Менделеева. При обычных условиях протекает и взаимодействие с кислородом.

Теперь, о реакциях нагрева. При сжигании металла образуются его оксиды. Их несколько видов: — 2FeO, 2Fe 2 O 3 , Fe 3 O 4 . Какой именно получится, зависит от пропорций исходных элементов и условий совмещения. Свойства оксидов разнятся.

Нагрев запускает и реакцию с . Для нее нужно 6 молей железа и один моль газа. Выход – 2 моля нитрида 26-го элемента. Его фосфид формируется уже в сочетании с фосфором. Еще одно простое вещество, объединяющееся с феррумом – . Получается, естественно, сульфид. Протекает реакция присоединения.

Из сложных веществ, то есть состоящих из молекул, железо взаимодействует с кислотами. Металл вытесняет из них водород. Получается замещение. Так, и взаимодействия с серной кислотой выходит сульфат феррума и чистый водород.

Возможны и реакции с . Их железо восстанавливает. Иными словами, 26-ой элемент выделяет из веществ менее активный металл. Соединив феррум, к примеру, с сульфатом меди, получают сульфат уже железа. остается в первозданном виде.

Применение железа

Где железо применяется, вытекает из его свойств. Ферромагнитоность пригождается при изготовлении сувениров и промышленных установок. Иными словами, из металла делают магниты, как для холодильников, так и для больших производств. Прочность материала, твердость – повод использовать его для изготовления оружия, брони.

Особым шиком считаются модели из метеоритного железа . В космических телах свойства феррума усилены. Поэтому, ножи и доспехи получаются особенно острыми, прочными. Признаки железа метеоритного заметили еще в Древнем Риме.

Известны и сплавы железа , в частности, чугун и сталь. Из них отливают вещи бытового, повседневного характера, к примеру, оградки, беседки, фурнитуру. Используют феррума и для промышленных целей. Интересно, что состав у стали и чугуна один, пропорции разные. И там, и там сливаются железо с углеродом . В стали газа меньше 1,7%. В чугуне углерода от 1,7 до 4,5%.

Углерод в сплавах железа играет роль упрочняющего элемента. Он снижает подверженность смеси коррозии и делает материал термоустойчивым. К сталям примешивают и иные добавки. Не зря существуют разные марки сплава. С , к примеру, производят стойкую к ударам и, при этом, пластичную сталь.

В виде хлорида 26-ой элемент используют для очистки воды. Пригождается металл и в медицине. Лечение железом необходимо при анемии. Это недостаток красных кровяных телец и металла в их составе. Препараты железа выписывают, так же, больным туберкулезом, радикулитом, страдающим от судорог и кровотечений из носа.

26-ой элемент необходим и для нормального функционирования щитовидной железы. Обычно, ее дисфункцию связывают с дефицитом . Однако, не он один обеспечивает здоровье железы.

Немало феррума и в клетках печени. Там металл способствует нейтрализации вредных веществ, токсинов. Для поддержания в организм человека должны поступать не меньше 20-ти миллиграммов железа в сутки.

Добыча железа

Железо – распространенный металл. В природе немало минералов, в основе которых лежит 26-ой элемент. Больше всего феррума в и . Из них-то и удаляют железо .

Проводится реакция восстановления металла. Для того нужен кокс, то есть соединение углерода. Взаимодействие протекает при температуре в 2000 градусов Цельсия, в доменных .

Без доменных печей обходятся при восстановлении феррума чистым водородом. Потребуются уже шахтные печи. Так называют модели вытянутые по вертикали.

Рабочее пространство аппарата подобно цилиндру или конусу. В них помещают измельченную руду железа , смешанную со специальной . Потом, добавляют водород. Итог все тот же – чистый феррум.

Цена железа

Стоимость металла зависит от вида продукции. Большинство вещей делаются из сплавов феррума, к примеру, кровельные материалы. Покрытия для крыш, как правило, листовые. Цена за квадратный метр варьируется от 300-от до 600-от с лишним рублей в зависимости от толщины железа.

Кровельные листы рифленые, сложной геометрии и особого состава. Простые пласты стоят дешевле. Есть предложения купить 30 листов 2,5 на 1,3 метра за 1000 рублей. Толщина – 1,5 миллиметра.

Чистый элемент в таблетках стоит около 1600 рублей за 180-200 штук. Если же приобретается готовое изделие, в которое вложен ручной труд, бывает сложно уложиться и в десятки, сотни тысяч. Яркий пример – кованная продукция по индивидуальным заказам.

За необычные ворота, мебель, вазы, кузнецы «срывают» немалый куш. Большую часть цены составляет не материал, а человеческий труд, воплощение в жизнь задумки.

Что касается стоимости железосодержащей руды, за тонну в России просят около 40-ка американских долларов. Это ценник за сырье с 60-процентным содержанием феррума. Когда выделяют чистый порошок 26-го элемента, за 1000 килограммов просят уже не меньше 560-600-от долларов США.

Большинство фирм торгуют оптом. Предложений купить только одно кило металла, редки. 1000 граммов обходится примерно в 1-1,5 доллара. Некоторые компании фасуют порошок феррума в мешки по 5, 10, 25 килограммов. Объявления о продаже размещены в интернете.

ОПРЕДЕЛЕНИЕ

Железо - двадцать шестой элемент Периодической таблицы. Обозначение - Fe от латинского «ferrum». Расположен в четвертом периоде, VIIIB группе. Относится к металлам. Заряд ядра равен 26.

Железо - самый распространенный после алюминия металл на земном шаре: оно составляет 4% (масс.) земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном состоянии железо находят только в метеоритах.

К важнейшим рудам железа относятся магнитный железняк Fe 3 O 4 , красный железняк Fe 2 O 3 , бурый железняк 2Fe 2 O 3 ×3H 2 O и шпатовый железняк FeCO 3 .

Железо - серебристый (рис. 1) пластичный металл. Оно хорошо поддается ковке, прокатке и другим видам механической обработки. Механические свойства железа сильно зависят от его чистоты - от содержания в нем даже весьма малых количеств других элементов.

Рис. 1. Железо. Внешний вид.

Атомная и молекулярная масса железа

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии железо существует в виде одноатомных молекул Fe значения его атомной и молекулярной масс совпадают. Они равны 55,847.

Аллотропия и аллотропные модификации железа

Железо образует две кристаллические модификации: α-железо и γ-железо. Первая из них имеет кубическую объемноцентрированную решетку, вторая - кубическую гранецентрированную. α-Железо термодинамически устойчиво в двух интервалах температур: ниже 912 o С и от 1394 o С до температуры плавления. Температура плавления железа равна 1539 ± 5 o С. Между 912 o С и от 1394 o С устойчиво γ-железо.

Температурные интервалы устойчивости α- и γ-железа обусловлены характером изменения энергии Гиббса обеих модификаций при изменении температуры. При температурах ниже 912 o С и выше 1394 o С энергия Гиббса α-железа меньше энергии Гиббса γ-железа, а в интервале 912 — 1394 o С - больше.

Изотопы железа

Известно, что в природе железо может находиться в виде четырех стабильных изотопов 54 Fe, 56 Fe, 57 Fe и 57 Fe. Их массовые числа равны 54, 56, 57 и 58 соответственно. Ядро атома изотопа железа 54 Fe содержит двадцать шесть протонов и двадцать восемь нейтронов, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы железа с массовыми числами от 45-ти до 72-х, а также 6 изомерных состояний ядер. Наиболее долгоживущим среди вышеперечисленных изотопов является 60 Fe с периодом полураспада равным 2,6 млн. лет.

Ионы железа

Электронная формула, демонстрирующая распределение по орбиталям электронов железа выглядит следующим образом:

1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 .

В результате химического взаимодействия железо отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Fe 0 -2e → Fe 2+ ;

Fe 0 -3e → Fe 3+ .

Молекула и атом железа

В свободном состоянии железо существует в виде одноатомных молекул Fe. Приведем некоторые свойства, характеризующие атом и молекулу железа:

Сплавы железа

До XIX века из сплавов железа были известны в основном его сплавы с углеродом, получившие названия стали и чугуна. Однако в дальнейшем были созданы новые сплавы на основе железа, содержащие хром, никель и другие элементы. В настоящее время сплавы железа подразделяют на углеродистые стали, чугуны, легированные стали и стали с особыми свойствами.

В технике сплавы железа принято называть черными металлами, а их производство - черной металлургией.

Примеры решения задач

ПРИМЕР 1

Задание Элементарный состав вещества следующий: массовая доля элемента железа 0,7241 (или 72,41%), массовая доля кислорода 0,2759 (или 27,59%). Выведите химическую формулу.
Решение Массовая доля элемента Х в молекуле состава НХ рассчитывается по следующей формуле:

ω (Х) = n × Ar (X) / M (HX) × 100%.

Обозначим число атомов железа в молекуле через «х», число атомов кислорода через «у».

Найдем соответствующие относительные атомные массы элементов железа и кислорода (значения относительных атомных масс, взятые из Периодической таблицы Д.И. Менделеева, округлим до целых чисел).

Ar(Fe) = 56; Ar(O) = 16.

Процентное содержание элементов разделим на соответствующие относительные атомные массы. Таким образом мы найдем соотношения между числом атомов в молекуле соединения:

x:y= ω(Fe)/Ar(Fe) : ω(O)/Ar(O);

x:y = 72,41/56: 27,59/16;

x:y = 1,29: 1,84.

Наименьшее число примем за единицу (т.е. все числа разделим на наименьшее число 1,29):

1,29/1,29: 1,84/1,29;

Следовательно, простейшая формула соединения железа с кислородом имеет вид Fe 2 O 3 .

Ответ Fe 2 O 3

В организме человека содержится около 5 г железа, большая часть его (70%) входит в состав гемоглобина крови.

Физические свойства

В свободном состоянии железо - серебристо-белый металл с сероватым оттенком. Чистое железо пластично, обладает ферромагнитными свойствами. На практике обычно используются сплавы железа - чугуны и стали.


Fe - самый главный и самый распространенный элемент из девяти d-металлов побочной подгруппы VIII группы. Вместе с кобальтом и никелем образует «семейство железа».


При образовании соединений с другими элементами чаще использует 2 или 3 электрона (В = II, III).


Железо, как и почти все d-элементы VIII группы, не проявляет высшую валентность, равную номеру группы. Его максимальная валентность достигает VI и проявляется крайне редко.


Наиболее характерны соединения, в которых атомы Fe находятся в степенях окисления +2 и +3.


Способы получения железа

1. Техническое железо (в сплаве с углеродом и другими примесями) получают карботермическим восстановлением его природных соединений по схеме:




Восстановление происходит постепенно, в 3 стадии:


1) 3Fe 2 O 3 + СО = 2Fe 3 O 4 + СO 2


2) Fe 3 O 4 + СО = 3FeO +СO 2


3) FeO + СО = Fe + СO 2


Образующийся в результате этого процесса чугун содержит более 2% углерода. В дальнейшем из чугуна получают стали - сплавы железа, содержащие менее 1,5 % углерода.


2. Очень чистое железо получают одним из способов:


а) разложение пентакарбонила Fe


Fe(CO) 5 = Fe + 5СО


б) восстановление водородом чистого FeO


FeO + Н 2 = Fe + Н 2 O


в) электролиз водных растворов солей Fe +2


FeC 2 O 4 = Fe + 2СO 2

оксалат железа (II)

Химические свойства

Fe - металл средней активности, проявляет общие свойства, характерные для металлов.


Уникальной особенностью является способность к «ржавлению» во влажном воздухе:



В отсутствие влаги с сухим воздухом железо начинает заметно реагировать лишь при Т > 150°С; при прокаливании образуется «железная окалина» Fe 3 O 4:


3Fe + 2O 2 = Fe 3 O 4


В воде в отсутствие кислорода железо не растворяется. При очень высокой температуре Fe реагирует с водяным паром, вытесняя из молекул воды водород:


3 Fe + 4Н 2 O(г) = 4H 2


Процесс ржавления по своему механизму является электрохимической коррозией. Продукт ржавления представлен в упрощенном виде. На самом деле образуется рыхлый слой смеси оксидов и гидроксидов переменного состава. В отличие от пленки Аl 2 О 3 , этот слой не предохраняет железо от дальнейшего разрушения.

Виды коррозии


Защита железа от коррозии


1. Взаимодействие с галогенами и серой при высокой температуре.

2Fe + 3Cl 2 = 2FeCl 3


2Fe + 3F 2 = 2FeF 3



Fe + I 2 = FeI 2



Образуются соединения, в которых преобладает ионный тип связи.

2. Взаимодействие с фосфором, углеродом, кремнием (c N 2 и Н 2 железо непосредственно не соединяется, но растворяет их).

Fe + Р = Fe x P y


Fe + C = Fe x C y


Fe + Si = Fe x Si y


Образуются вещества переменного состава, т к. бертоллиды (в соединениях преобладает ковалентный характер связи)

3. Взаимодействие с «неокисляющими» кислотами (HCl, H 2 SO 4 разб.)

Fe 0 + 2Н + → Fe 2+ + Н 2


Поскольку Fe располагается в ряду активности левее водорода (Е° Fe/Fe 2+ = -0,44В), оно способно вытеснять Н 2 из обычных кислот.


Fe + 2HCl = FeCl 2 + Н 2


Fe + H 2 SO 4 = FeSO 4 + Н 2

4. Взаимодействие с «окисляющими» кислотами (HNO 3 , H 2 SO 4 конц.)

Fe 0 - 3e - → Fe 3+


Концентрированные HNO 3 и H 2 SO 4 «пассивируют» железо, поэтому при обычной температуре металл в них не растворяется. При сильном нагревании происходит медленное растворение (без выделения Н 2).


В разб. HNO 3 железо растворяется, переходит в раствор в виде катионов Fe 3+ а анион кислоты восстанавливется до NO*:


Fe + 4HNO 3 = Fe(NO 3) 3 + NO + 2Н 2 O


Очень хорошо растворяется в смеси НСl и HNO 3

5. Отношение к щелочам

В водных растворах щелочей Fe не растворяется. С расплавленными щелочами реагирует только при очень высоких температурах.

6. Взаимодействие с солями менее активных металлов

Fe + CuSO 4 = FeSO 4 + Cu


Fe 0 + Cu 2+ = Fe 2+ + Cu 0

7. Взаимодействие с газообразным монооксидом углерода (t = 200°C, P)

Fe(порошок) + 5CO (г) = Fe 0 (CO) 5 пентакарбонил железа

Соединения Fe(III)

Fe 2 O 3 - оксид железа (III).

Красно-бурый порошок, н. р. в Н 2 O. В природе - «красный железняк».

Способы получения:

1) разложение гидроксида железа (III)


2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O


2) обжиг пирита


4FeS 2 + 11O 2 = 8SO 2 + 2Fe 2 O 3


3) разложение нитрата


Химические свойства

Fe 2 O 3 - основный оксид с признаками амфотерности.


I. Основные свойства проявляются в способности реагировать с кислотами:


Fe 2 О 3 + 6Н + = 2Fe 3+ + ЗН 2 О


Fe 2 О 3 + 6HCI = 2FeCI 3 + 3H 2 O


Fe 2 О 3 + 6HNO 3 = 2Fe(NO 3) 3 + 3H 2 O


II. Слабокислотные свойства. В водных растворах щелочей Fe 2 O 3 не растворяется, но при сплавлении с твердыми оксидами, щелочами и карбонатами происходит образование ферритов:


Fe 2 О 3 + СаО = Ca(FeО 2) 2


Fe 2 О 3 + 2NaOH = 2NaFeО 2 + H 2 O


Fe 2 О 3 + MgCO 3 = Mg(FeO 2) 2 + CO 2


III. Fe 2 О 3 - исходное сырье для получения железа в металлургии:


Fe 2 О 3 + ЗС = 2Fe + ЗСО или Fe 2 О 3 + ЗСО = 2Fe + ЗСO 2

Fe(OH) 3 - гидроксид железа (III)

Способы получения:

Получают при действии щелочей на растворимые соли Fe 3+ :


FeCl 3 + 3NaOH = Fe(OH) 3 + 3NaCl


В момент получения Fe(OH) 3 - красно-бурый слизистоаморфный осадок.


Гидроксид Fe(III) образуется также при окислении на влажном воздухе Fe и Fe(OH) 2:


4Fe + 6Н 2 O + 3O 2 = 4Fe(OH) 3


4Fe(OH) 2 + 2Н 2 O + O 2 = 4Fe(OH) 3


Гидроксид Fe(III) является конечным продуктом гидролиза солей Fe 3+ .

Химические свойства

Fe(OH) 3 - очень слабое основание (намного слабее, чем Fe(OH) 2). Проявляет заметные кислотные свойства. Таким образом, Fe(OH) 3 имеет амфотерный характер:


1) реакции с кислотами протекают легко:



2) свежий осадок Fe(OH) 3 растворяется в горячих конц. растворах КОН или NaOH с образованием гидроксокомплексов:


Fe(OH) 3 + 3КОН = K 3


В щелочном растворе Fe(OH) 3 может быть окислен до ферратов (солей не выделенной в свободном состоянии железной кислоты H 2 FeO 4):


2Fe(OH) 3 + 10КОН + 3Br 2 = 2K 2 FeO 4 + 6КВr + 8Н 2 O

Соли Fe 3+

Наиболее практически важными являются: Fe 2 (SO 4) 3 , FeCl 3 , Fe(NO 3) 3 , Fe(SCN) 3 , K 3 4- желтая кровяная соль = Fe 4 3 берлинская лазурь (темно-синий осадок)


б) Fe 3+ + 3SCN - = Fe(SCN) 3 роданид Fe(III) (р-р кроваво-красного цвета)

Ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после ).

Смотрите так же:

СТРУКТУРА

Для железа установлено несколько полиморфных модификаций, из которых высокотемпературная модификация — γ-Fe(выше 906°) образует решетку гранецентрированного куба типа Сu (а 0 = 3,63), а низкотемпературная — α-Fe-решетку центрированного куба типа α-Fe (a 0 = 2,86).
В зависимости от температуры нагрева железо может находиться в трех модификациях, характеризующихся различным строением кристаллической решетки:

  1. В интервале температур от самых низких до 910°С -а-феррит (альфа-феррит), имеющий строение кристаллической решетки в виде центрированного куба;
  2. В интервале температур от 910 до 1390°С - аустенит, кристаллическая решетка которого имеет строение гранецентрированного куба;
  3. В интервале температур от 1390 до 1535°С (температура плавления) - д-феррит (дельта-феррит). Кристаллическая решетка д-феррита такая же, как и а-феррита. Различие между ними только в иных (для д-феррита больших) расстояниях между атомами.

При охлаждении жидкого железа первичные кристаллы (центры кристаллизации) возникают одновременно во многих точках охлаждаемого объема. При последующем охлаждении вокруг каждого центра надстраиваются новые кристаллические ячейки, пока не будет исчерпан весь запас жидкого металла.
В результате получается зернистое строение металла. Каждое зерно имеет кристаллическую решетку с определенным направлением его осей.
При последующем охлаждении твердого железа при переходах д-феррита в аустенит и аустенита в а-феррит могут возникать новые центры кристаллизации с соответствующим изменением величины зерна

СВОЙСТВА

В чистом виде при нормальных условиях это твердое вещество. Оно обладает серебристо-серым цветом и ярко выраженным металлическим блеском. Механические свойства железа включают в себя уровень твердости по шкале Мооса. Она равна четырем (средняя). Железо обладает хорошей электропроводностью и теплопроводностью. Последнюю особенность можно ощутить, дотронувшись до железного предмета в холодном помещении. Так как этот материал быстро проводит тепло, он за короткий промежуток времени забирает большую его часть из вашей кожи, и поэтому вы ощущаете холод.
Дотронувшись, к примеру, до дерева, можно отметить, что его теплопроводность намного ниже. Физические свойства железа - это и его температуры плавления и кипения. Первая составляет 1539 градусов по шкале Цельсия, вторая - 2860 градусов по Цельсию. Можно сделать вывод, что характерные свойства железа - хорошая пластичность и легкоплавкость. Но и это еще далеко не все. Также в физические свойства железа входит и его ферромагнитность. Что это такое? Железо, магнитные свойства которого мы можем наблюдать на практических примерах каждый день, — единственный металл, обладающий такой уникальной отличительной чертой. Это объясняется тем, что данный материал способен намагничиваться под действием магнитного поля. А по прекращении действия последнего железо, магнитные свойства которого только что сформировались, еще надолго само остается магнитом. Такой феномен можно объяснить тем, что в структуре данного металла присутствует множество свободных электронов, которые способны передвигаться.

ЗАПАСЫ И ДОБЫЧА

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %.

В земной коре железо распространено достаточно широко - на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало - в кислых и средних породах.
Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты.
Содержание железа в морской воде — 1·10 −5 -1·10 −8 %
В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями, как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах. Химически чистое железо получается электролизом растворов его солей.

ПРОИСХОЖДЕНИЕ

Происхождение теллурическое (земное) железо редко встречается в базальтовыхлавах (Уифак, о. Диско, у западного берега Гренландии, вблизи г. Касселя Германия). В обоих пунктах с ним ассоциируют пирротин (Fe 1-x S) и когенит (Fe 3 C), что объясняют как восстановление углеродом (в том числе и из вмещающих пород), так и распадом карбонильных комплексов типа Fe(CO) n . В микроскопических зернах оно не раз устанавливалось в измененных (серпентинизированных) ультраосновных породах также в парагенезисе с пирротином, иногда с магнетитом, за счет которых оно и возникает при восстановительных реакциях. Очень редко встречается в зоне окисления рудных месторождений, при образовании болотных руд. Зарегистрированы находки в осадочных породах, связываемые с восстановлением соединений железа водородом и углеводородами.
Почти чистое железо найдено в лунном грунте, что связывают как с падениями метеоритов, так и с магматическими процессами. Наконец, два класса метеоритов — железокаменные и железные содержат природные сплавы железа в качестве породообразующего компонента.

ПРИМЕНЕНИЕ

Железо - один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.
Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
Железо может входить в состав сплавов на основе других металлов - например, никелевых.
Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
Ультрадисперсный порошок магнетита используется во многих чёрно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.
Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.
Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Железо (англ. Iron) — Fe

КЛАССИФИКАЦИЯ

Hey’s CIM Ref1.57

Strunz (8-ое издание) 1/A.07-10
Nickel-Strunz (10-ое издание) 1.AE.05
Dana (7-ое издание) 1.1.17.1

Желе́зо - элемент побочной подгруппы восьмой группы четвёртого периода периодической системы химических элементов с атомным номером 26. Обозначается символом Fe (лат. Ferrum). Один из самых распространённых в земной коре металлов (второе место после алюминия).
Простое вещество железо (CAS-номер: 7439-89-6) - ковкий металл серебристо-белого цвета с высокой химической реакционной способностью: железо быстро корродирует при высоких температурах или при высокой влажности на воздухе. В чистом кислороде железо горит, а в мелкодисперсном состоянии самовозгорается и на воздухе.
На самом деле железом обычно называют его сплавы с малым содержанием примесей (до 0,8 %), которые сохраняют мягкость и пластичность чистого металла. Но на практике чаще применяются сплавы железа с углеродом: сталь (до 2,14 вес. % углерода) и чугун (более 2,14 вес. % углерода), а также нержавеющая (легированная) сталь с добавками легирующих металлов (хром, марганец, никель и др.). Совокупность специфических свойств железа и его сплавов делают его «металлом № 1» по важности для человека.
В природе железо редко встречается в чистом виде, чаще всего оно встречается в составе железо-никелевых метеоритов. Распространённость железа в земной коре - 4,65 % (4-е место после O, Si, Al). Считается также, что железо составляет бо́льшую часть земного ядра.

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза, укр. залізо, ст.-слав. желѣзо, болг. желязо, сербохорв. жељезо, польск. żelazo, чеш. železo, словен. železo).
Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός, что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха» и *glazъ «скала», с общей семой «камень». Третья версия предполагает древнее заимствование из неизвестного языка.
Романские языки (итал. ferro, фр. fer, исп. hierro, порт. ferro, рум. fier) продолжают лат. ferrum . Латинское ferrum (Германские языки заимствовали название железа (готск. eisarn,англ. iron, нем. Eisen, нидерл. ijzer,дат. jern, швед. järn) из кельтских.
Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h1esh2r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish2ro- «сильный, святой, обладающий сверхъестественной силой».
Древнегреческое слово σίδηρος, возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра.
Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus, означающее «звезда», вероятно, имеют общее происхождение.

Получение

В промышленности железо получают из железной руды, в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).
Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.
Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C. В доменной печи углерод в виде кокса, железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.
В печи углерод в виде кокса окисляется до монооксида углерода. Данный оксид образуется при горении в недостатке кислорода. В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III). Флюс добавляется для избавления от нежелательных примесей (в первую очередь от силикатов; например кварц) в добываемой руде. Типичный флюс содержит известняк (карбонат кальция) и доломит (карбонат магния). Для устранения других примесей используют другие флюсы.
Действие флюса (в данном случае карбонат кальция) заключается в том, что при его нагревании он разлагается до его оксида. Оксид кальция соединяется с диоксидом кремния, образуя шлак - метасиликат кальция. Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности - это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи, содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.
Излишки углерода и другие примеси (сера, фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.
Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана, которые содержат водород. Водород легко восстанавливает железо, при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле. Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.
Химически чистое железо получается электролизом растворов его солей.