Германий получение свойства и применение. Германий — редкий и полезный полуметалл. Текущая ситуация с германием

В человеческом организме содержится огромное количество микро- и макроэлементов, без которых полноценное функционирование всех органов и систем было бы просто невозможным. О некоторых из них люди слышат постоянно, а о существовании других вовсе не подозревают, но все они играют свою роль в хорошем самочувствии. К последней группе относится и германий, содержащийся в теле человека в органическом виде. Что это за элемент, за какие процессы отвечает и какой его уровень считается нормой - читайте далее.

Описание и характеристика

В общем понимании германий является одним из химических элементов, представленных в известной таблице Менделеева (относится к четвертой группе). В природе он представлен в виде твердого, серо-белого вещества с металлическим отблеском, но в человеческом теле содержится в органической форме.

Надо сказать, что его нельзя назвать очень редким, поскольку он обнаруживается в железных и сульфидных рудах и силикатах, хоть собственных минералов германий практически не образует. Содержание химического элемента в коре Земли превышает концентрацию серебра, сурьмы и висмута в несколько раз, а в отдельных минералах его количество доходит до 10 кг на тонну. Воды мирового океана содержат в себе около 6 10-5 мг/л германия.

Многие растения, произрастающие на разных континентах, способны абсорбировать небольшое количество данного химического элемента и его соединений из грунта, после чего они могут попасть и в организм человека. В органическом виде все такие составляющие принимают непосредственное участие в различных обменных и восстановительных процессах, о чем пойдет речь далее.

Знаете ли вы? Впервые данный химический элемент был замечен в 1886 году, а узнали о нем благодаря стараниям немецкого ученного-химика К. Винклера. Правда, до этого момента о его существовании говорил и Менделеев (в 1869 году), который сначала условно назвал его «экасилицием».

Функции и роль в организме

Еще совсем недавно ученные считали, что германий совершенно бесполезен для человека и в принципе не выполняет совершенно никакой функции в теле живых организмов. Тем не менее, на сегодняшний день, точно известно, что отдельные органические соединения данного химического элемента могут успешно использоваться даже в роли лекарственных составов, хотя на счет их эффективности говорить пока рано.

Опыты, проводимые на лабораторных грызунах, показали, что даже небольшое количество германия способно увеличить продолжительность жизни животных на 25-30%, а это уже само по себе хорошая причина задуматься о его пользе и для человека.
Уже проведенные исследования роли органического германия в человеческом организме позволяют выделить следующие биологические функции этого химического элемента:

  • предотвращение кислородного голодания организма путем перенесения кислорода к тканям (снижается риск так называемой «кровяной гипоксии», проявляющейся при снижении количества гемоглобина в эритроцитах);
  • стимуляция развития защитных функций организма путем подавления процессов распространения микробных клеток и активации специфических клеток иммунитета;
  • активное противогрибковое, противовирусное и антибактериальное воздействие за счет продуцирования интерферона, защищающего организм от вредоносных микроорганизмов;
  • мощное антиоксидантное воздействие, выражающееся в блокировке свободных радикалов;
  • задержка развития опухолевых новообразований и предупреждение образования метастаз (в данном случае германий нейтрализует действие отрицательно заряженных частиц);
  • выступает регулятором клапанных систем пищеварения, венозной системы и перистальтики;
  • за счет остановки движения электронов в нервных клетках, соединения германия способствуют снижению разнообразных болевых проявлений.

Все проводимые эксперименты, предусматривающие определение скорости распределения германия в человеческом организме после его перорального употребления, показали, что спустя 1,5 часа после приема больше всего данного элемента содержится в желудке, тонком кишечнике, селезенке, костном мозге, ну и, конечно же, в крови. То есть, высокий уровень германия в органах пищеварительной системы доказывает его пролонгированное действие при всасывании в кровоток.

Важно! Не стоит самостоятельно проверять на себе действие указанного химического элемента, ведь неправильный расчет дозировки вполне может привести к серьезному отравлению.

В чем содержится германий: продукты источники

Любой микроэлемент в нашем организме выполняет определенную функцию, поэтому для хорошего самочувствия и поддержания тонуса так важно обеспечить оптимальный уровень тех или иных составляющих. Это касается и германия. Пополнить его запасы, можно ежедневно употребляя чеснок (именно здесь его содержится больше всего), пшеничные отруби, бобовые культуры, белые грибы, томаты, рыбу и морепродукты (в частности, креветок и мидий), и даже , черемшу и алоэ.
Усилить же действие германия на организм можно с помощью селена. Многие из указанных продуктов без проблем найдутся в доме у каждой хозяйки, поэтому никаких трудностей возникать не должно.

Суточная потребность и нормы

Не секрет, что переизбыток даже полезных компонентов может навредить ничуть не меньше чем их недостача, поэтому, прежде, чем переходить к восполнению утраченного количества германия, важно знать о его допустимой суточной норме. Обычно это значение колеблется в пределах от 0,4 до 1,5 мг и зависит от возраста человека и имеющегося дефицита микроэлемента.

Человеческий организм хорошо справляется с абсорбцией германия (поглощение указанного химического элемента составляет 95%) и сравнительно равномерно распределяет его по тканям и органам (неважно идет речь о внеклеточном или внутриклеточном пространстве). Вывод германия наружу происходит вместе с мочой (выходит до 90%).

Дефицит и переизбыток


Как мы уже упоминали выше, любая крайность не к добру. То есть, как недостача, так и превышение количества германия в организме способно отрицательно сказаться на его функциональных особенностях. Так, при дефиците микроэлемента (является результатом его ограниченного потребления вместе с пищей или нарушения обменных процессов в организме) возможно развитие остеопороза и деминерализации костной ткани, а также в несколько раз повышается возможность онкологических состояний.

Чрезмерное количество германия оказывает отравляющее воздействие на организм, причем особо опасными считаются соединения двухлетнего элемента. В большинстве случаев его избыток можно объяснить вдыханием чистых паров в производственных условиях (ПДК в воздухе может составлять 2 мг/куб.м). При непосредственном контакте с хлоридом германия не исключены местные раздражения кожи, а его попадание внутрь организма часто чревато поражениями печени и почек.

Знаете ли вы? В медицинских целях описанным элементом впервые заинтересовались японцы, а настоящим прорывом в этом направлении стало исследование доктора Асаи, обнаружившего широкий спектр биологического действия германия.


Как видим, описанный микроэлемент действительно нужен нашему организму, пусть его роль пока и не до конца изучена. Поэтому, чтобы поддерживать оптимальный баланс просто кушайте побольше перечисленных продуктов и постарайтесь не находиться во вредных производственных условиях.

ГЕРМАНИЙ, Ge (от лат. Germania — Германия * а. germanium; н. Germanium; ф. germanium; и. germanio), — химический элемент IV группы периодической системы Менделеева, атомный номер 32, атомная масса 72,59. Природный германий состоит из 4 стабильных изотопов 70 Ge (20,55%), 72 Ge (27,37%), 73 Ge (7,67%), 74 Ge (36,74%) и одного радиоактивного 76 Ge (7,67%) с периодом полураспада 2.10 6 лет. Открыт в 1886 немецким химиком К. Винклером в минерале аргиродите; был предсказан в 1871 Д. Н. Менделеевым (экасилиций).

Германий в природе

Германий относится к . Распространённость германия в (1-2).10 -4 %. В качестве примеси встречается в минералах кремния, в меньшей степени в минералах и . Собственные минералы германия очень редки: сульфосоли — аргиродит, германит, реньерит и некоторые другие; двойной гидратированный оксид германия и железа — штоттит; сульфаты — итоит, флейшерит и некоторые др. Промышленного значения они практически не имеют. Германий накапливается в гидротермальных и осадочных процессах, где реализуется возможность отделения его от кремния. В повышенных количествах (0,001-0,1%) встречается в , и . Источниками германия являются полиметаллические руды, ископаемые угли и некоторые типы вулканогенно-осадочных месторождений . Основное количество германия получают попутно из подсмольных вод при коксовании углей, из золы энергетических углей, сфалеритовых и магнетитовых . Германий извлекается кислотным , возгонкой в восстановительной среде, сплавлением с едким натром и др. Концентраты германия обрабатываются соляной кислотой при нагревании, конденсат очищается и подвергается гидролитическому разложению с образованием диоксида; последний восстанавливается водородом до металлического германия, который очищается методами фракционной и направленной кристаллизации, зонной плавки.

Применение германия

Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов. Из германия изготовляют линзы для ИК оптики, фотодиоды, фоторезисторы, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, преобразователи энергии радиоактивного распада в электрическую и т.д. Сплавы германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. Некоторые сплавы германия с другими химическими элементами — сверхпроводники.

(Germanium; от лат. Germania - Германия), Ge - хим. элемент IV группы периодической системы элементов; ат. н. 32, ат. м. 72,59. Серебристо-серое вещество с металлическим блеском. В хим. соединениях проявляет степени окисления + 2 и +4. Соединения со степенью окисления +4 более стойки. Природный германий состоит из четырех стабильных изотопов с массовыми числами 70 (20,55%), 72 (27,37%), 73(7, 67%) и 74 (36,74%) и одного радиоактивного изотопа с массовым числом 76 (7,67%) и периодом полураспада 2 106 лет. Искусственно (с помощью различных ядерных реакций) получено много радиоактивных изотопов; наибольшее значение имеет изотоп 71 Ge с периодом полураспада 11,4 дня.

Существование и св-ва германия (под названием «экасилиций») предсказал в 1871 рус ученый Д. И. Менделеев. Однако лишь в 1886 нем. химик К. Винклер обнаружил в минерале аргиродите неизвестный элемент, св-ва к-рого совпадали со св-вами «экасилиция». Начало пром. произ-ва германий относится к 40-м гг. 20 в., когда он получил применение в качестве полупроводникового материала. Содержание германия в земной коре (1-2) 10~4 %. Германий относится к рассеянным элементам и редко встречается в виде собственных минералов. Известно семь минералов, в к-рых его концентрация больше 1 %, среди них: Cu2 (Си, Ge, Ga, Fe, Zn)2 (S, As)4X X (6,2-10,2% Ge), рениерит (Cu, Fe)2 (Cu, Fe, Ge, Ga, Zn)2 X X (S, As)4 (5,46-7,80% Ge) и аргиродит Ag8GeS6 (3/55-6,93% Ge). Г. накапливается также в каустобиолитах (гумусовых углях, горючих сланцах, нефти). Стойкая при обычных условиях кристаллическая модификация Г. имеет кубическую структуру типа алмаза, с периодом а = 5,65753 A (Gel).

Германий это

Плотность германия (т-ра 25° С) 5,3234 г/см3, tпл 937,2° С; tкип 2852° С; теплота плавления 104,7 кал/г, теплота сублимации 1251 кал/г, теплоемкость (т-ра 25° С) 0,077 кал/г град; коэфф. теплопроводности, (т-ра 0° С) 0,145 кал/см сек град, температурный коэфф. линейного расширения (т-ра 0-260° С),5,8 х 10-6 град-1. При плавлении германий уменьшается в объеме (примерно на 5,6%), плотность его увеличивается на 4% ч При высоком давлении алмазо-подобная модификация. Германий претерпевает полиморфные превращения, образуя кристаллические модификации: тетрагональную структуру типа B-Sn (GeII), объемноцентрированную тетрагональную структуру с периодами а = 5,93 А, с = 6,98 A (GeIII) и объемноцентрированную кубическую структуру с периодом а = 6,92 A(GeIV). Эти модификации по сравнению с GeI отличаются большими плотностью и электропроводностью.

Аморфный германий может быть получен в виде пленок (толщиной примерно 10-3 см) при конденсации пара. Плотность его меньше плотности кристаллического Г. Структура энергетических зон в кристалле Г. обусловливает его полупроводниковые св-ва. Ширина запрещенной зоны Г. равна 0,785 эв (т-ра 0 К), удельное электрическое сопротивление (т-ра 20° С) 60 ом · см и с повышением т-ры значительно понижается по экспоненциальному закону. Примеси придают Г. т. н. примесную проводимость электронного (примеси мышьяка, сурьмы, фосфора) или дырочного (примеси галлия, алюминия, индия) типа. Подвижность носителей зарядов в Г. (т-ра 25° С) для электронов - около 3600 см2/в сек, для дырок - 1700 см2/в · сек, собственная концентрация носителей зарядов (т-ра 20° С) 2,5 . 10 13 см-3. Г. диамагнитен. При плавлении переходит в металлическое состояние. Германий очень хрупок, твердость его по Моосу 6,0, микротвердость 385 кгс/мм2, предел прочности на сжатие (т-ра 20° С) 690 кгс/см2. С повышением т-ры твердость снижается, выше т-ры 650° С он становится пластичным, поддается мех. обработке. Германий практически инертен к воздуху, кислороду и к неокисляющим электролитам (если нет растворенного кислорода) при т-ре до 100° С. Стойкий к действию соляной и разбавленной серной к-т; медленно растворяется в концентрированных серной и азотной к-тах при нагревании (образующаяся при этом пленка двуокиси замедляет растворение), хорошо растворяется в «царской водке», в растворах ги-похлоритов или гидроокисей щелочных металлов (при наличии перекиси водорода), в расплавах щелочей, перекисей, нитратов и карбонатов щелочных металлов.

Выше т-ры 600° С окисляется на воздухе и в токе кислорода, образуя с кислородом окись GeO и двуокись (Ge02). Окись германия- темно-серый порошок, возгоняющийся при т-ре 710° С, незначительно растворяется в воде с образованием слабой германитной к-ты (H2Ge02), соли к-рой (германиты) малостойки. В к-тах GeO легко растворяется с образованием солей двухвалентного Г. Двуокись германия- порошок белого цвета, существует в нескольких полиморфных модификациях, сильно различающихся по хим. св-вам: гексагональная модификация двуокиси сравнительно хорошо растворяется в воде (4,53 zU при т-ре 25° С), растворах щелочей и к-т, тетрагональная модификация практически нерастворима в воде и инертна к к-там. Растворяясь в щелочах, двуокись и ее гидрат образуют соли метагерманатной (H2Ge03) и ортогерманатной (H4Ge04) к-т - германаты. Германаты щелочных металлов растворяются в воде, остальные германаты практически нерастворимы; свежеосажденные растворяются в минеральных к-тах. Г. легко соединяется с галогенами, образуя при нагревании (около т-ры 250° С) соответствующие тетрагало-гениды - несолеобразные соединения, легко гидролизующиеся водой. Известны Г.- темно-коричневый (GeS) и белый (GeS2).

Для германия характерны соединения с азотом - коричневый нитрид (Ge3N4) и черный нитрид (Ge3N2), отличающийся меньшей хим. стойкостью. С фосфором Г. образует малостойкий фосфид (GeP) черного цвета. С углеродом не взаимодействует и не сплавляется, с кремнием образует непрерывный ряд твердых растворов. Для германий, как аналога углерода и кремния, характерна способность образовывать германоводороды типа GenH2n + 2 (германы), а также твердые соединения типов GeH и GeH2 (гермены).Германий образует металлические соединения () и со мн. металлами. Извлечение Г. из сырья заключается в получении богатого германиевого концентрата, а из него - высокой чистоты. В пром. масштабе германий получают из тетрахлорида, используя при очистке его высокую летучесть (для выделения из концентрата), малую в концентрированной соляной к-те и высокую в органических растворителях (для очистки от примесей). Часто для обогащения используют высокую летучесть низших сульфида и окисла Г., к-рые легко сублимируются.

Для получения полупроводникового германий применяют направленную кристаллизацию и зонную перекристаллизацию. Монокристаллический германий получают вытягиванием из расплава. В процессе выращивания Г. легируют спец. добавками, регулируя те или иные св-ва монокристалла. Г. поставляют в виде слитков длиной 380- 660 мм и поперечным сечением до 6,5 см2. Германий применяют в радиоэлектронике и электротехнике как полупроводниковый материал для изготовления диодов и транзисторов. Из него изготовляют линзы для приборов инфракрасной оптики, дозиметры ядерных излучений, анализаторы рентгеновской спектроскопии, датчики, использующие эффект Холла, преобразователи энергии радиоактивного распада в электрическую. Германий используют в микроволновых аттенюаторах, термометрах сопротивления, эксплуатируемых при т-ре жидкого гелия. Пленка Г., нанесенная на рефлектор, отличается высокой отражательной способностью, хорошей коррозионной стойкостью. германия с некоторыми металлами, отличающиеся повышенной стойкостью к кислым агрессивным средам, используют в приборостроении, машиностроении и металлургии. гемания с золотом образуют низкоплавкую эвтектику и расширяются при охлаждении. Двуокись Г. применяют для изготовления спец. стекол, характеризующихся высоким коэфф. преломления и прозрачностью в инфракрасной части спектра, стеклянных электродов и термисторов, а также эмалей и декоративных глазурей. Германаты используют в качестве активаторов фосфоров и люминофоров.

— химический элемент периодической системы химических элементов Д.И. Менделеева. И обозначается символом Ge , германий это простое вещество серо-белого цвета и имеет твердые характеристики как для метала.

Cодержание в земной коре 7.10-4% по массе. относится к рассеянным элементам, из за сваей реакционной способности к окислению в свободном состоянии как чистый метал не встречается.

Нахождение германия в природе

Германий — один из трёх химических элементов, предсказанных Д.И. Менделеевым на основании их положения в периодической системы (1871 г).

Он относится к редким рассеянным элементам.

В настоящее время основными источниками промышленного получения германия являются отходы цинкового производства, коксования углей, зола некоторых некоторых видов углей, в примесях силикатов, осадочных породах железа, в никелевых и вольфрамовый рудах, торфе, нефти, геотермальных водах и в некоторых водорослях.

Основные минералы содержащие германий

Плюмбогерматит (PbGeGa) 2 SO 4 (OH) 2 +H 2 O содержание до 8.18 %

яргиродит AgGeS6 содержит от 3.65 до 6.93 % германия .

рениерит Cu 3 (FeGeZn)(SAs) 4 содержит от 5.5 до 7.8% германия.

В некоторых странах получение германия является побочным продуктом переработки некоторых руд таких как цинк-свинец-медь. Также германий получают в производстве кокса, а также в золе бурого угля с содержанием от 0.0005 до 0.3% и в золе каменных углей с содержанием от 0.001 до 1 -2 % .

Германий как металл очень устойчив к действию кислорода воздуха, кислорода, воды некоторых кислот, разбавленной серной и соляной кислоты. Но сконцентрированной серной кислотой реагирует очень медленно.

Германий реагирует с азотной кислотой HNO 3 и царской водкой, медленно реагирует едкими щелочами с образованием соли германата, но при добавлении перекиси водорода H 2 O 2 реакция протекает очень быстро.

При воздействии высоких температур свыше 700 °С германий легко окисляется на воздухе с образованием GeO 2 , легко вступает в реакцию с галогенами, получая при этом тетрагалогениты.

С водородом, кремнием, азотом и углеродом не вступает в реакцию.

Известны летучие соединения германия с характеристиками:

Германия гексагидрид -дигерман, Ge 2 H 6 — горючий газ, при длительном хранении на свету разлагается, окрашиваясь в желтый затем в коричневый цвет превращаясь в твёрдое вещество тёмно — коричневого цвета, разлагается водой и щелочами.

Германия тетрагидрид, моногерман — GeH 4 .

Применение германия

Германий, как и некоторые другие , имеет свойства так называемых полупроводников. Все по их электропроводности делятся на три группы: проводники, полупроводники и изоляторы (диэлектрики) . Удельная электропроводность металлов находиться в интервале 10В4 — 10В6 Ом.смВ-1 , приведённое деление условно. Однако можно указать принципиальное различие в электрофизических свойствах проводников и полупроводников. У первых электропроводность с повышением температуры падает, у полупроводников — возрастает. При температуре, близкой к абсолютному нулю, полупроводники превращаются в изоляторы. Как известно, металлические проводники проявляют в таких условиях свойства сверхпроводимости.

Полупроводниками могут быть различные вещества. К ним относятся : бор, (

Назван в честь Германии. Ученый из этой страны открыл и имел право именовать его, как захочет. Так в попал германий .

Однако, посчастливилось не Менделееву, а Клеменсу Винклеру. Ему поручили изучить аргиродит. Новый минерал, состоящий, в основном, из , нашли на прииске Химмельфюрст.

Винклер определил 93% состава камня и зашел в тупик с оставшимися 7%. Напрашивался вывод, что в них входит неизвестный элемент.

Более тщательный анализ принес плоды, — был открыт германий . Это металл. Чем он пригодился человечеству? Об этом, и не только, расскажем далее.

Свойства германия

Германий – 32 элемент таблицы Менделеева . Получается, металл входит в 4-ю группу. Номер соответствует валентности элементов.

То есть, германий склонен образовывать 4 химических связи. Это делает элемент, открытый Винклером, похожим на .

Отсюда и желание Менделеева назвать еще неоткрытый элемент экосилицием, обозначаемым, как Si. Дмитрий Ивановичь заранее просчитал свойства 32-го металла.

На кремний германий похож химическими свойствами. С кислотами реагирует только при нагревании. Со щелочами «общается» в присутствии окислителей.

Устойчив к парам воды. Не вступает в реакции с водородом, углеродом, . Загорается германий при температуре в 700-от градусов Цельсия. Реакция сопровождается образованием диоксида германия.

32-ой элемент легко взаимодействует с галогенами. Это солеобразующие вещества из 17 группы таблицы.

Дабы не запутаться, укажем, что ориентируемся на новый стандарт. В старом, это 7-я группа таблицы Менделеева.

Какой бы ни была таблица, металлы в ней располагаются слева от ступенчатой диагональной линии. 32-ой элемент – исключение.

Еще одно исключение – . С ней тоже возможна реакция. Сурьма осаждается на подложке.

Активное взаимодействие обеспеченно и с . Как большинство металлов, германий способен гореть в ее парах.

Внешне элемент германий , серовато-белый, с выраженным металлическим блеском.

При рассмотрении внутреннего строения, металл имеет кубическую структуру. Она отражает расположение атомов в элементарных ячейках.

Они имеют форму кубов. Восемь атомов располагаются в вершинах. Строение близко к решетке .

У 32-го элемента 5 стабильных изотопов. Их наличие – свойство всех элементов подгруппы германия.

Они четные, что и обуславливает присутствие стабильных изотопов. У , к примеру, их 10.

Плотность германия составляет 5,3-5,5 граммов на кубический сантиметр. Первый показатель характерен для состояния, второй – для жидкого металла.

В размягченном виде он не только более плотный, но и пластичный. Хрупкое при комнатной температуре вещество становится при 550-ти градусах. Таковы особенности германия.

Твердость металла при комнатной температуре составляет около 6 баллов по .

В таком состоянии 32-ой элемент является типичным полупроводником. Но, свойство становится «ярче» при повышении температуры. Просто проводники, для сравнения, теряют свои свойства при нагреве.

Германий проводит ток не только в стандартном виде, но и в растворах.

По полупроводниковым свойствам 32-ой элемент, так же, близок кремнию и столь же распространен.

Однако, сферы применения веществ разнятся. Кремний – полупроводник, используемый в солнечных батареях, в том числе, и тонкопленочного типа.

Элемент нужен, так же, для фотоэлементов. Теперь, рассмотрим, где пригождается германий.

Применение германия

Германий применяют в гаммо-спектроскопии. Ее приборы позволяют, к примеру, изучить состав добавок в смешанных окислах катализаторов.

В прошлом, германий добавляли в диоды и транзисторы. В фотоэлементах свойства полупроводника тоже пригождаются.

Но, если кремний добавляют в стандартные модели, то германий – в высокоэффективные, нового поколения.

Главное, не использовать германий при температуре близкой к абсолютному нулю. В таких условиях металл теряет способность передавать напряжение.

Чтобы германий был проводником, примесей в нем должно быть не более 10%. Идеален ультрачистый химический элемент.

Германий делают таким методом зонной плавки. Она основана на различной растворимости сторонних элементов в жидкой и фазах.

Формула германия позволяет применять его и в деле. Здесь речь уже не о полупроводниковых свойствах элемента, а о его способности придать твердость .

По этой же причине, германий нашел применение в зубопротезировании. Хотя, коронки отживают свой век, небольшой спрос на них, все еще, есть.

Если добавить к германию и еще и кремний с алюминием, получаются припои.

Их температура плавления всегда ниже, чем у соединяемых металлов. Так что, можно делать сложные, дизайнерские конструкции.

Даже интернет без германия был бы невозможен. 32-ой элемент присутствует в оптоволокне. В его сердцевине находится кварц с примесью героя .

А его двуокись увеличивает отражательные способности оптоволокна. Учитывая спрос на него, , электронику, германий нужен промышленникам в больших объемах. Каких именно, и как их обеспечивают, изучим ниже.

Добыча германия

Германий довольно распространен. В земной коре 32-го элемента, к примеру, больше, чем , сурьмы, или .

Разведанные запасы – около 1 000 тонн. Почти половина из них сокрыта в недрах США. Еще 410 тонн – достояние .

Так что, остальным странам, в основном, приходиться закупать сырье. сотрудничает с Поднебесной. Это обосновано и с политической точки зрения, и с позиции экономии.

Свойства элемента германий , связанные с его геохимическим родством с широко распространенными веществами, не позволяют металлу образовывать собственные минералы.

Обычно, металл внедряется в решетку уже существующих . Много места гость, естественно, не займет.

Поэтому, приходиться извлекать германий по крупицам. В можно найти несколько кило на тонну породы.

В энаргитах на 1000 килограммов приходиться не больше 5 кило германия. В пираргирите в 2 раза больше.

В тонне сульванита 32-го элемента содержится не больше 1 килограмма. Чаще всего, германий извлекают в качестве побочного продукта из руд других металлов, к примеру, , или цветных, таких как хромит, магнитит, рутит.

Годовое производство германия колеблется в пределах 100-120 тонн, в зависимости от спроса.

В основном, закупается монокристаллическая форма вещества. Именно такая нужна для производства спектрометров, оптоволокна, драгоценных . Узнаем расценки.

Цена германия

Монокристаллический германий, в основном, закупают тоннами. Для больших производств это выгодно.

1 000 килограммов 32-го элемента стоит около 100 000 рублей. Можно найти предложения за 75 000 – 85 000.

Если брать поликристаллический, то есть, с агрегатами меньшего размера и повышенной прочностью, можно отдать в 2,5 раза больше всего за кило сырья.

Стандартны длинной не меньше 28-ми сантиметров. Блоки защищают пленкой, поскольку на воздухе они тускнеют. Поликристаллический германий – «почва» для выращивания монокристаллов.

Германий

ГЕРМА́НИЙ -я; м. Химический элемент (Ge), твёрдое вещество серовато-белого цвета с металлическим блеском (является основным полупроводниковым материалом). Пластинка германия.

Герма́ниевый, -ая, -ое. Г-ое сырьё. Г. слиток.

герма́ний

(лат. Germanium), химический элемент IV группы периодической системы. Название от латинского Germania - Германия, в честь родины К. А. Винклера. Серебристо-серые кристаллы; плотность 5,33 г/см 3 , t пл 938,3ºC. В природе рассеян (собственные минералы редки); добывают из руд цветных металлов. Полупроводниковый материал для электронных приборов (диоды, транзисторы и др.), компонент сплавов, материал для линз в ИК-приборах, детекторов ионизирующего излучения.

ГЕРМАНИЙ

ГЕРМА́НИЙ (лат. Germanium), Gе (читается «гертемпманий»), химический элемент с атомным номером 32, атомная масса 72,61. Природный германий состоит из пяти изотопов с массовыми числами 70 (содержание в природной смеси 20,51% по массе), 72 (27,43%), 73 (7,76%), 74 (36,54%), и 76 (7,76%). Конфигурация внешнего электронного слоя 4s 2 p 2 . Степени окисления +4, +2 (валентности IV, II). Расположен в группе IVA, в 4 периоде в периодической системе элементов.
История открытия
Был открыт К. А. Винклером (см. ВИНКЛЕР Клеменс Александр) (и назван в честь его родины - Германии) в 1886 при анализе минерала аргиродита Ag 8 GeS 6 после того, как существование этого элемента и некоторые его свойства были предсказаны Д. И. Менделеевым (см. МЕНДЕЛЕЕВ Дмитрий Иванович) .
Нахождение в природе
Содержание в земной коре 1,5·10 -4 % по массе. Относится к рассеянным элементам. В природе в свободном виде не встречается. Содержится в виде примеси в силикатах, осадочных железных, полиметаллических, никелевых и вольфрамовых рудах, углях, торфе, нефтях, термальных водах и водорослях. Важнейшие минералы: германит Cu 3 (Ge,Fe,Ga)(S,As) 4 , стоттит FeGe(OH) 6 , плюмбогерманит (Pb,Ge,Ga) 2 SO 4 (OH) 2 ·2H 2 O, аргиродит Ag 8 GeS 6 , рениерит Cu 3 (Fe,Ge,Zn)(S,As) 4 .
Получение германия
Для получения германия используют побочные продукты переработки руд цветных металлов, золу от сжигания углей, некоторые продукты коксохимии. Сырье, содержащее Ge, обогащают флотацией. Затем концентрат переводят в оксид GeO 2 , который восстанавливают водородом (см. ВОДОРОД) :
GeO 2 + 4H 2 = Ge + 2H 2 O
Германий полупроводниковой чистоты с содержанием примесей 10 -3 -10 -4 % получают зонной плавкой (см. ЗОННАЯ ПЛАВКА) , кристаллизацией (см. КРИСТАЛЛИЗАЦИЯ) или термолизом летучего моногермана GeH 4:
GeH 4 = Ge + 2H 2 ,
который образуется при разложении кислотами соединений активных металлов с Ge - германидов:
Mg 2 Ge + 4HCl = GeH 4 – + 2MgCl 2
Физические и химические свойства
Германий - вещество серебристого цвета с металлическим блеском. Кристаллическая решетка устойчивой модификации (Ge I), кубическая, гранецентрированная типа алмаза, а = 0,533 нм (при высоких давлениях получены три другие модификации). Температура плавления 938,25 °C, кипения 2850 °C, плотность 5,33 кг/дм 3 . Обладает полупроводниковыми свойствами, ширина запрещенной зоны 0,66 эВ (при 300 К). Германий прозрачен для инфракрасного излучения с длиной волны больше 2 мкм.
По химическим свойствам Ge напоминает кремний (см. КРЕМНИЙ) . При обычных условиях устойчив к кислороду (см. КИСЛОРОД) , парам воды, разбавленным кислотам. В присутствии сильных комплексообразователей или окислителей, при нагревании Ge реагирует с кислотами:
Ge + H 2 SO 4 конц = Ge(SO 4) 2 + 2SO 2 + 4H 2 O,
Ge + 6HF = H 2 + 2H 2 ,
Ge + 4HNO 3 конц. = H 2 GeO 3 + 4NO 2 + 2H 2 O
Ge реагирует с царской водкой (см. ЦАРСКАЯ ВОДКА) :
Ge + 4HNO 3 + 12HCl = GeCl 4 + 4NO + 8H 2 O.
С растворами щелочей Ge взаимодействует в присутствии окислителей:
Ge + 2NaOH + 2H 2 O 2 = Na 2 .
При нагревании на воздухе до 700 °C Ge загорается. Ge легко взаимодействует с галогенами (см. ГАЛОГЕНЫ) и серой (см. СЕРА) :
Ge + 2I 2 = GeI 4
С водородом (см. ВОДОРОД) , азотом (см. АЗОТ) , углеродом (см. УГЛЕРОД) германий непосредственно в реакции не вступает, соединения с этими элементами получают косвенным путем. Например, нитрид Ge 3 N 4 образуется при растворении дииодида германия GeI 2 в жидком аммиаке:
GeI 2 + NH 3 жидк -> n -> Ge 3 N 4
Оксид германия (IV), GeO 2 , - белое кристаллическое вещество, существующее в двух модификациях. Одна из модификаций частично растворима в воде с образование сложных германиевых кислот. Проявляет амфотерные свойства.
С щелочами GeO 2 взаимодействует как кислотный оксид:
GeO 2 + 2NaOH = Na 2 GeO 3 + H 2 O
GeO 2 взаимодействует с кислотами:
GeO 2 + 4HCl = GeCl 4 + 2H 2 O
Тетрагалогениды Ge - неполярные соединения, легко гидролизующиеся водой.
3GeF 4 + 2H 2 O = GeO 2 + 2H 2 GeF 6
Тетрагалогениды получают прямым взаимодействием:
Ge + 2Cl 2 = GeCl 4
или термическим разложением:
BaGeF 6 = GeF 4 ­ + BaF 2
Гидриды германия по химическим свойствам подобны гидридам кремния, но моногерман GeH 4 более устойчив, чем моносилан SiH 4 . Германы образуют гомологические ряды Ge n H 2n+2 , Ge n H 2n и другие, но эти ряды короче, чем у силанов.
Моногерман GeH 4 - газ, устойчивый на воздухе, не реагирующий с водой. При длительном хранении разлагается на H 2 и Ge. Получают моногерман восстановлением диоксида германия GeO 2 борогидридом натрия NaBH 4:
GeO 2 + NaBH 4 = GeH 4 ­ + NaBO 2 .
Очень неустойчивый монооксид GeO образуется при умеренном нагревании смеси германия и диоксида GeO 2:
Ge + GeO 2 = 2GeO.
Соединения Ge (II) легко диспропорционируют с выделением Ge:
2GeCl 2 -> Ge + GeCl 4
Дисульфида германия GeS 2 - белое аморфное или кристаллическое вещество, получается осаждением H 2 S из кислых растворов GeCl 4:
GeCl 4 + 2H 2 S = GeS 2 Ї + 4HCl
GeS 2 растворяется в щелочах и сульфидах аммония или щелочных металлов:
GeS 2 + 6NaOH = Na 2 + 2Na 2 S,
GeS 2 + (NH 4) 2 S = (NH 4) 2 GeS 3
Ge может входить в состав органических соединений. Известны (CH 3) 4 Ge, (C 6 H 5) 4 Ge, (CH 3) 3 GeBr, (C 2 H 5) 3 GeOH и другие.
Применение
Германий - полупроводниковый материал, применяется в технике и радиоэлектронике при производстве транзисторов и микросхем. Тонкие пленки Ge, нанесенные на стекло, применяют в качестве сопротивлений в радарных установках. Сплавы Ge с металлами используются в датчиках и детекторах. Диоксид германия применяют в производстве стекол, пропускающих инфракрасное излучение.

Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "германий" в других словарях:

    Химический элемент, открытый в 1886 г. в редком минерале аргиродите, найденном в Саксонии. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. германий (назв. в честь родины ученого, открывшего элемент) хим. элемент,… … Словарь иностранных слов русского языка

    - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886 … Современная энциклопедия

    германий - Ge Элемент IV группы Периодич. системы; ат. н. 32, ат. м. 72,59; тв. вещ во с металлич. блеском. Природный Ge — смесь пяти стабильных изотопов с массовыми числами 70, 72, 73, 74 и 76. Существование и свойства Ge предсказал в 1871 г. Д. И.… … Справочник технического переводчика

    Германий - (Germanium), Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59; неметалл; полупроводниковый материал. Германий открыт немецким химиком К. Винклером в 1886. … Иллюстрированный энциклопедический словарь

    - (лат. Germanium) Ge, химический элемент IV группы периодической системы, атомный номер 32, атомная масса 72,59. Назван от латинского Germania Германия, в честь родины К. А. Винклера. Серебристо серые кристаллы; плотность 5,33 г/см³, tпл 938,3 … Большой Энциклопедический словарь

    - (символ Ge), бело серый металлический элемент IV группы периодической таблицы МЕНДЕЛЕЕВА, в которой были предсказаны свойства еще не открытых элементов, в частности, германия (1871 г.). Открыт элемент в 1886 г. Побочный продукт выплавки цинковых… … Научно-технический энциклопедический словарь

    Ge (от лат. Germania Германия * a. germanium; н. Germanium; ф. germanium; и. germanio), хим. элемент IV группы периодич. системы Менделеева, ат.н. 32, ат. м. 72,59. Природный Г. состоит из 4 стабильных изотопов 70Ge (20,55%), 72Ge… … Геологическая энциклопедия

    - (Ge), синтетич. монокристалл, ПП, точечная группа симметрии m3m, плотность 5,327 г/см3, Tпл=936 °С, тв. по шкале Мооса 6, ат. м. 72,60. Прозрачен в ИК области l от 1,5 до 20 мкм; оптически анизотропен, для l=1,80 мкм коэфф. преломления n=4,143.… … Физическая энциклопедия

    Сущ., кол во синонимов: 3 полупроводник (7) экасилиций (1) элемент (159) … Словарь синонимов

    ГЕРМАНИЙ - хим. элемент, символ Ge (лат. Germanium), ат. н. 32, ат. м. 72,59; хрупкое серебристо серое кристаллическое вещество, плотность 5327 кг/м3, bил = 937,5°С. В природе рассеян; добывают его главным образом при переработке цинковой обманки и… … Большая политехническая энциклопедия