Естествознание. Что такое естественные науки? Методы естественных наук Общие черты мирового эволюционного процесса. Учение В.И.Вернадского о биосфере

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План

1. Естествознание как наука о Природе. Базовые науки естествознания и их взаимосвязь

2. Квантовая физика и ее основные принципы. Мир частиц и античастиц

3. Механика. Основные законы классической механики

1. Естествознание как наука о Природе. Базовые науки естествознания и их взаимосвязь

Естествознание наука о природе . В современном мире естествознание представляет систему наук о природе, или так называемых естественных наук, взятых во взаимной связи и опирающихся, как правило, на математические способы описания объектов исследования.

Естествознание:

Одна из трех основных областей научного знания о природе, обществе и мышлении;

Является теоретической основой промышленной и сельскохозяйственной техники и медицины

Является естественнонаучным фундаментом картины мира.

Являясь фундаментом формирования научной картины мира, естествознание представляет собой определенную систему взглядов на то или иное понимание естественных явлений или процессов. И если такая система взглядов принимает единый, определяющий характер, то она, как правило, называется концепцией. С течением времени появляются новые эмпирические факты и обобщения и система взглядов на понимание процессов изменяется, появляются новые концепции.

Если рассматривать предметную область естествознания предельно широко, то она включает:

Различные формы движения материи в природе;

Их материальные носители, которые образуют "лестницу" уровней структурной организации материи;

Их взаимосвязь, внутреннюю структуру и генезис.

Но так было не всегда. Проблемы устройства, происхождения организации всего, что есть во Вселенной (Космосе), в 4-6 веках относились к "физике". А Аристотель называл тех, кто занимался этими проблемами, просто "физиками" или "физиологами", т.к. древнегреческое слово "физика" равно слову "природа".

В современном естествознании природа рассматривается не абстрактно, вне деятельности человека, а конкретно, как находящаяся под воздействием человека, т.к. ее познание достигается не только умозрительной, теоретической, но и практической производственной деятельностью людей.

Таким образом, естествознание как отражение природы в человеческом сознании совершенствуется в процессе ее активного преобразования в интересах общества.

Из этого вытекают и цели естествознания:

Выявление сущности явлений природы, их законов и на этой основе предвидение или создание новых явлений;

Умение использовать на практике познанные законы, силы и вещества природы.

Отсюда следует, что если общество заинтересовано в подготовке высококвалифицированных специалистов, способных продуктивно использовать свои знания, то цель изучения концепций современного естествознания - это не изучение физики, химии, биологии и т.п., а выявление тех скрытых связей, которые создают органическое единство физических, химических, биологических явлений.

К естественным наукам относятся:

Науки о космосе, его строении и эволюции (астрономия, космология, астрофизика, космохимия и т.д.);

Физические науки (физика) - науки о наиболее глубоких законах природных объектов и в то же время - о наиболее простых формах их изменений;

Химические науки (химия) - науки о веществах и их превращениях

Биологические науки (биология) - науки о жизни;

Науки о Земле (геономия) - сюда относится: геология (наука о строении земной коры), география (наука о размерах и формах участков земной поверхности) и др.

Перечисленные науки не исчерпывают всего естествознания, т.к. человек и человеческое общество от природы неотделимы, являются его частью.

Стремление человека к познанию окружающего мира выражается в различных формах, способах и направлениях его исследовательской деятельности. Каждая из основных частей объективного мира - природа, общество и человек - изучается своими отдельными науками. Совокупность научных знаний о природе формируется естествознанием, т. е. знанием о природе ("естество" - природа - и "знание").

Естествознание - совокупность наук о природе, имеющих предметом своих исследований различные явления и процессы природы, закономерности их эволюции. Кроме того, естествознание является отдельной самостоятельной наукой о природе, как едином целом. Оно позволяет изучить любой объект окружающего нас мира более глубоко, чем это может сделать какая-либо одна из естественных наук. Поэтому естествознание, наряду с науками об обществе и мышлении, - важнейшая часть человеческого знания. Оно включает в себя как деятельность по получению знания, так и ее результаты, т. е. систему научных знаний о природных процессах и явлениях.

Спецификой предмета естествознания является то, что оно исследует одни и те же природные явления сразу с позиций нескольких наук, выявляя наиболее общие закономерности и тенденции, рассматривая Природу как бы сверху. Только так можно представить Природу как единую целостную систему, выявить те основания, на которых строится все разнообразие предметов и явлений окружающего мира. Итогом таких исследований становится формулировка основных законов, связывающих микро-, макро- и мегамиры, Землю и Космос, физические и химические явления с жизнью и разумом во Вселенной. Главная задача настоящего курса - осознание Природы как единой целостности, поиск более глубоких взаимоотношений между физическими, химическими и биологическими явлениями, а также выявление скрытых связей, создающих органическое единство этих явлений.

Структура естествознания представляет собой сложную разветвленную систему знаний, все части которой находятся в отношении иерархической соподчиненности. Это означает, что систему естественных наук можно представить в виде своеобразной лестницы, каждая ступенька которой является фундаментом для следующей за ней науки, и в свою очередь основывается на данных предшествующей науки.

Так, основа, фундамент всех естественных наук - физика, предметом которой являются тела, их движения, превращения и формы проявления на различных уровнях.

Следующая ступень иерархии - химия, изучающая химические элементы, их свойства, превращения и соединения.

В свою очередь химия лежит в основе биологии - науки о живом, изучающей клетку и все от нее производное. В основе биологии - знания о веществе, химических элементах.

Науки о Земле (геология, география, экология и др.) - следующая степень структуры естествознания. Они рассматривают строение и развитие нашей планеты, представляющей собой сложнейшее сочетание физических, химических и биологических явлений и процессов.

Завершает эту грандиозную пирамиду знаний о Природе космология, изучающая Вселенную как целое. Частью этих знаний являются астрономия и космогония, изучающие строение и происхождение планет, звезд, галактик и т. д. На этом уровне происходит новое возвращение к физике. Это позволяет говорить о циклическом, замкнутом характере естествознания, что, очевидно, отражает одно из важнейших свойств самой Природы.

В науке идут сложнейшие процессы дифференциации и интеграции научного знания. Дифференциация науки - это выделение внутри какой-либо науки более узких, частных областей исследования, превращение их в самостоятельные науки. Так, внутри физики выделились физика твердого тела, физика плазмы.

Интеграция науки - это появление новых наук на стыках старых, проявление процессов объединения научного знания. Примером такого рода наук являются: физическая химия, химическая физика, биофизика, биохимия, геохимия, биогеохимия, астробиология и др.

Естествознание - совокупность наук о природе, имеющих предметом своих исследований различные явления и процессы природы, закономерности их эволюции.

Метафизика (греч. meta ta physika - после физики) - философское учение о сверхчувствительных (недоступных опыту) принципах бытия.

Натурфилософия - умозрительное истолкование природы, восприятие ее как единого целого.

Системный подход - представление о мире как о совокупности разноуровневых систем, связанных отношениями иерархической соподчиненности.

2. Квантовая физика и ее основные пр инципы. Мир частиц и античастиц

В 1900г. немецкий физик М. Планк своими исследованиями продемонстрировал, что излучение энергии происходит дискретно, определенными порциями - квантами, энергия которых зависит от частоты световой волны. Теория М. Планка не нуждалась в концепции эфира и преодолевала противоречия и трудности электродинамики Дж. Максвелла. Эксперименты М. Планка привели к признанию двойственного характера света, который обладает одновременно корпускулярными и волновыми свойствами. Понятно, что такой вывод был несовместим с представлениями классической физики. Теория М. Планка положила начало новой квантовой физики, которая описывает процессы, протекающие в микромире.

Опираясь на идеи М. Планка, А. Эйнштейн предложил фотонную теорию света, согласно которой свет есть поток движущихся квантов. Квантовая теория света (фотонная теория) рассматривает свет как волну с прерывистой структурой. Свет есть поток неделимых световых квантов - фотонов. Гипотеза А. Эйнштейна позволила объяснить явление фотоэффекта - выбивания электронов из вещества под действием электромагнитных волн. Стало ясно, что электрон выбивается фотоном лишь в том случае, если энергия фотона достаточна для преодоления силы взаимодействия электронов с атомным ядром. В 1922 г. за создание квантовой теории света А. Эйнштейн получил Нобелевскую премию.

Объяснение процесса фотоэффекта опиралось, помимо квантовой гипотезы М. Планка, также на новые представления о строении атома. В 1911г. английский физик Э. Резерфорд предложил планетарную модель атома. Модель представляла собой атом как положительно заряженное ядро, вокруг которого вращаются отрицательно заряженные электроны. Возникающая при движении электронов по орбитам сила уравновешивается притяжением между положительно заряженным ядром и отрицательно заряженными электронами. Общий заряд атома равен нулю, поскольку заряды ядра и электронов равны друг другу. Почти вся масса атома сосредоточена в его ядре, а масса электронов ничтожно мала. С помощью планетарной модели атома было объяснено явление отклонения альфа-частиц при прохождении через атом. Поскольку размеры атома велики по сравнению с размерами электронов и ядра, альфа-частица без препятствий проходит через него. Отклонение наблюдается только тогда, когда альфа-частица проходит близко от ядра, в этом случае электрическое отталкивание вызывает ее резкое отклонение от первоначального пути. В 1913г. датский физик Н. Бор предложил более совершенную модель атома, дополнив идеи Э. Резерфорда новыми гипотезами. Постулаты Н. Бора звучали следующим образом:

1. Постулат стационарных состояний. Электрон совершает в атоме устойчивые орбитальные движения по стационарным орбитам, не испуская и не поглощая энергии.

2. Правило частот. Электрон способен переходить с одной стационарной орбиты на другую, при этом испуская или поглощая энергию. Поскольку энергии орбит дискретны и постоянны, то при переходе с одной из них на другую всегда испускается или поглощается определенная порция энергии.

Первый постулат позволил ответить на вопрос: почему электроны при движении по круговым орбитам вокруг ядра не падают на него, т.е. почему атом остается устойчивым образованием?

Второй постулат объяснил прерывность спектра излучения электрона. Квантовые постулаты Н. Бора означали отказ от классических физических представлений, которые до этого времени считались абсолютно истинными.

Несмотря на быстрое признание, теория Н. Бора все же не давала ответов на многие вопросы. В частности, ученым не удавалось точно описать многоэлектронные атомы. Выяснилось, что это связано с волновой природой электронов, представлять которые в виде твердых частиц, движущихся по определенным орбитам, ошибочно.

В действительности состояния электрона могут меняться. Н. Бор предположил, что микрочастицы не являются ни волной, ни корпускулой. При одном типе измерительных приборов они ведут себя как непрерывное поле, при другом - как дискретные материальные частицы. Выяснилось, что представление о точных орбитах движения электронов также ошибочно. Вследствие своей волновой природы электроны скорее "размазаны" по атому, причем весьма неравномерно. В определенных точках плотность их заряда достигает максимума. Кривая, связывающая точки максимальной плотности заряда электрона, и представляет собой его "орбиту".

В 20-30-е гг. В. Гейзенберг и Л. де Бройль заложили основы новой теории - квантовой механики. В 1924г. в работе "Свет и материя"

Л. де Бройль высказал предположение об универсальности корпускулярно-волнового дуализма, согласно которому все микрообъекты могут вести себя и как волны, и как частицы. На основе уже установленной дуальной (корпускулярной и волновой) природы света он высказал идею о волновых свойствах любых материальных частиц. Так, например, электрон ведет себя как частица, когда движется в электромагнитном поле, и как волна, когда проходит сквозь кристалл. Эта идея получила название корпускулярно-волнового дуализма. Принцип корпускулярно-волнового дуализма устанавливает единство дискретности и непрерывности материи.

В 1926г. Э. Шредингер на основе идей Л. де Бройля построил волновую механику. По его мнению, квантовые процессы - это волновые процессы, поэтому классический образ материальной точки, занимающей определенное место в пространстве, адекватен только макропроцессам и совершенно неверен для микромира. В микромире частица существует одновременно и как волна, и как корпускула. В квантовой механике электрон можно представить как волну, длина которой зависит от ее скорости. Уравнение Э. Шредингера описывает движение микрочастиц в силовых полях и учитывает их волновые свойства.

На основе этих представлений в 1927г. был сформулирован принцип дополнительности, по которому волновые и корпускулярные описания процессов в микромире не исключают, а взаимно дополняют друг друга, и только в единстве дают полное описание. При точном измерении одной из дополнительных величин другая претерпевает неконтролируемое изменение. Понятия частицы и волны не только дополняют друг друга, но и в то же время противоречат друг другу. Они являются дополняющими картинами происходящего. Утверждение корпускулярно-волнового дуализма стало основой квантовой физики.

В 1927г. немецкий физик В. Гейзенберг пришел к выводу о невозможности одновременного, точного измерения координаты частицы и ее импульса, зависящего от скорости, эти величины мы можем определить только с определенной степенью вероятности. В классической физике предполагается, что координаты движущегося объекта можно определить с абсолютной точностью. Квантовая механика существенно ограничивает эту возможность. В. Гейзенберг в работе "Физика атомного ядра" изложил свои идеи.

Вывод В. Гейзенберга получил название принципа соотношения неопределенностей, который лежит в основе физической интерпретации квантовой механики. Его суть в следующем: невозможно одновременно иметь точные значения разных физических характеристик микрочастицы - координаты и импульса. Если мы получаем точное значение одной величины, то другая остается полностью неопределенной, существуют принципиальные ограничения на измерение физических величин, характеризующих поведение микрообъекте.

Таким образом, заключил В. Гейзенберг, реальность различается в зависимости от того, наблюдаем мы ее или нет. "Квантовая теория уже не допускает вполне объективного описания природы", - писал он. Измерительный прибор влияет на результаты измерения, т.е. в научном эксперименте влияние человека оказывается неустранимым. В ситуации эксперимента мы сталкиваемся с субъект-объектным единством измерительного прибора и изучаемой реальности.

Важно отметить, что это обстоятельство не связано с несовершенством измерительных приборов, а является следствием объективных, корпускулярно-волновых свойств микрообъектов. Как утверждал физик М. Борн, волны и частицы - это только "проекции" физической реальности на экспериментальную ситуацию.

Два фундаментальных принципа квантовой физики - принцип соотношения неопределенностей и принцип дополнительности - указывают на то, что наука отказывается от описания только динамических закономерностей. Законы квантовой физики - статистические. Как пишет В. Гейзенберг, "в экспериментах с атомными процессами мы имеем дело с вещами и фактами, которые столь же реальны, сколь реальны любые явления повседневной жизни. Но атомы или элементарные частицы реальны не в такой степени. Они образуют скорее мир тенденций или возможностей, чем мир вещей и фактов". В дальнейшем квантовая теория стала базой для ядерной физики, а в 1928г. П. Дирак заложил основы релятивистской квантовой механики.

3. Механика. Основн ые законы классической механики

естествознание наука механика квантовый

Классическая механика - физическая теория, устанавливающая законы движения макроскопических тел со скоростями, значительно меньшими скорости света в вакууме.

Классическая механика подразделяется на:

Статику (которая рассматривает равновесие тел)

Кинематику (которая изучает геометрическое свойство движения без рассмотрения его причин)

Динамику (которая рассматривает движение тел).

Основу классической механики составляют три закона Ньютона:

Первый закон Ньютона постулирует существование особых систем отсчета, называемых интерциальными, в которых любое тело сохраняет состояние покоя или равномерного прямолинейного движения, пока на него не действуют силы со стороны других тел (закон инерции).

Второй закон Ньютона утверждает, что в инерциальных системах отсчета ускорение любого тела пропорционально сумме действующих на него сил и обратно пропорционально массе тела (F = ma).

Третий закон Ньютона гласит, что при взаимодействии любых двух тел, они испытывают друг со стороны друга силы, одинаковые по величине и противоположные по направлению (действие равно противодействию).

Чтобы на базе этих основных законов Ньютоновой механики рассчитывать движение физических тел, их необходимо дополнить описанием сил, возникающих между телами при различных способах взаимодействия. В современной физике рассматривается множество различных сил: гравитации, трения, давления, натяжения, Архимеда, подъемная сила, Кулона (электростатическая), Лоренца (магнитная) и др. Все эти силы зависят от взаимного расположения и скорости взаимодействующих тел.

Классическая механика - вид механики (раздела физики, изучающей законы изменения положений тел и причины, это вызывающие), основанный на 3 законах Ньютона и принципе относительности Галилея. Поэтому её часто называют "Ньютоновской механикой". Важное место в классической механике занимает существование инерциальных систем. Классическая механика подразделяется на статику (которая рассматривает равновесие тел) и динамику (которая рассматривает движение тел). Классическая механика дает очень точные результаты в рамках повседневного опыта. Но для систем, движущихся с большими скоростями, приближающимися к скорости света, более точные результаты дает релятивистская механика, для систем микроскопических размеров - квантовая механика, а для систем, обладающих обеими характеристиками - квантовая теория поля. Тем не менее, классическая механика сохраняет свое значение, поскольку она намного проще в понимании и использовании, чем остальные теории, и в обширном диапазоне она достаточно хорошо приближается к реальности. Классическую механику можно использовать для описания движения таких объектов, как волчок и бейсбольный мяч, многих астрономических объектов (таких, как планеты и галактики), и даже многих микроскопических объектов, таких как органические молекулы. Хотя классическая механика в общих чертах совместима с другими "классическими теориями", такими как классическая электродинамика и термодинамика, в конце 19 века были найдены несоответствия, которые удалось разрешить только в рамках более современных физических теорий. В частности, классическая электродинамика предсказывает, что скорость света постоянна для всех наблюдателей, что трудно совместить с классической механикой, и что привело к необходимости создания специальной теории относительности. При рассмотрении совместно с классической термодинамикой, классическая механика приводит к парадоксу Гиббса в котором невозможно точно определить величину энтропии и к ультрафиолетовой катастрофе, в которой абсолютно чёрное тело должно излучать бесконечное количество энергии. Попытки разрешить эти проблемы привели к развитию квантовой механики.

Размещено на Allbest.ru

...

Подобные документы

    Основные компоненты естествознания как системы естественных наук. Александрийский период развития науки. Основные законы механики Ньютона. Этапы создания учения об электромагнетизме. Квантовая механика. Стехиометрические законы. Явление катализа.

    контрольная работа , добавлен 16.01.2009

    Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа , добавлен 13.06.2013

    Место естествознания в современной научной картине мира. Вклад средневековой науки в развитие научного знания. Пример смены парадигм в археологии – борьба концепций эволюционизма и миграционизма. Развитие науки в Средние века, вклад Леонардо да Винчи.

    реферат , добавлен 09.12.2010

    Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.

    учебное пособие , добавлен 27.01.2010

    Определение естествознания как отрасли научного познания, его отличие от других наук, разделы естествознания. Наука как одна из форм общественного сознания. Описание и объяснение различных процессов и явлений действительности как основные цели науки.

    реферат , добавлен 16.04.2011

    Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа , добавлен 10.06.2007

    Систематизация знаний в отдельные науки. Возникновение и развитие естествознания, основные понятия и цели. Связь научных знаний о природе с производственной и трудовой деятельностью человека. Взаимосвязь и взаимозависимость естествознания и общества.

    контрольная работа , добавлен 04.04.2009

    Концепция как совокупность главных идей методов исследования и описания результатов, функции науки. Картин мира – научная, механическая, электромагнитная и современная (объединяющая все естественные науки). Основные принципы, на которых они основываются.

    реферат , добавлен 10.06.2010

    Естествознание как система научных знаний о природе, обществе и мышлении взятых в их взаимной связи. Формы движения материи в природе. Предмет, цели, закономерности и особенности развития, эмпирическая, теоретическая и прикладная стороны естествознания.

    реферат , добавлен 15.11.2010

    Физика и естествознание. Формирование квантовой механики и квантовой физики, специфика их законов и принципов. Основные понятия "элементарность", "простое-сложное", "деление". Многообразие и единство элементарных частиц, проблема их классификации.

Необходимость межпредметных связей в обучении бесспорна. Последовательное и систематическое их осуществление значительно усиливает эффективность учебно-воспитательного процесса, формирует диалектический способ мышления учащихся. К тому же межпредметные связи - непременное дидактическое условие развития у учеников интереса к знаниям основ наук, в том числе и естественных.

Вот что показал анализ уроков физики, химии и биологии: в большинстве случаев учителя ограничиваются лишь фрагментарным включением межпредметных связей (МПС). Иными словами, лишь напоминают факты, явления или закономерности из смежных предметов.

Учителя редко включают учащихся в самостоятельную работу по применению межпредметных знаний и умений при изучении программного материала, а также в процессе самостоятельного переноса ранее усвоенных знаний в новую ситуацию. Следствие - неумение ребят осуществлять перенос и синтез знаний из смежных предметов. Нет и преемственности в обучении. Так, учителя биологии непрерывно «забегают вперед», знакомя учащихся с различными физико-химическими процессами, протекающими в живых организмах, без опоры на физические и химические понятия, что мало способствует осознанному усвоению биологических знаний.

Общий анализ учебников позволяет отметить: многие факты и понятия излагаются в них неоднократно по разным дисциплинам, причем повторное их изложение практически мало чего прибавляет к знаниям учащихся. Более того, зачастую одно и то же понятие разными авторами интерпретируется по-разному, тем самым, затрудняя процесс их усвоения. Часто в учебниках используются малоизвестные учащимся термины, в них мало заданий межпредметного характера. Многие авторы почти не упоминают о том, что какие-то явления, понятия уже изучались в курсах смежных предметов, не указывают на то, что данные понятия будут более подробно рассмотрены при изучении другого предмета. Анализ ныне действующих программ по естественным дисциплинам позволяет сделать вывод о том, что межпредметным связям не уделяется должного внимания. Только в программах по общей биологии 10-11 классов (В.Б. Захаров); «Человек» (В.И. Сивоглазов) есть специальные разделы «Межпредметные связи» с указанием на физические и химические понятия, законы и теории, являющиеся фундаментом при формировании биологических понятий. В программах по физике и химии таких разделов нет, и учителям приходится самим устанавливать необходимые МПС. А это задачка многотрудная - координировать материал смежных предметов таким образом, чтобы обеспечить единство в интерпретации понятий.

Межпредметные связи физики, химии и биологии могли бы устанавливаться значительно чаще и эффективнее. Изучение процессов, протекающих на молекулярном уровне возможно только при условии привлечения знаний молекулярной биофизики, биохимии, биологической термодинамики, элементов кибернетики, взаимно дополняющих друг друга. Эта информация рассредоточена по курсам физики и химии, но только в курсе биологии появляется возможность рассмотреть сложные для учащихся вопросы, используя межпредметные связи. Кроме того, появляется возможность отработать понятия, общие для цикла естественных дисциплин, такие, как вещество, взаимодействие, энергия, дискретность и др.

При изучении основ цитологии межпредметные связи устанавливаются с элементами знаний биофизики, биохимии, биокибернетики. Так, например, клетка может быть представлена как механическая система, и в этом случае рассматриваются ее механические параметры: плотность, упругость, вязкость и т. д. Физико-химические характеристики клетки позволяют рассматривать ее как дисперсную систему, совокупность электролитов, полупроницаемых мембран. Без совмещения «таких образов» вряд ли можно сформировать понятие о клетке как сложной биологической системе. В разделе «Основы генетики и селекции» МПС устанавливаются между органической химией (белки, нуклеиновые кислоты) и физикой (основы молекулярно-кинетической теории, дискретность электрического заряда и др.).

Учитель должен заранее запланировать возможность осуществления как предшествующих, так и перспективных связей биологии с соответствующими разделами физики. Информация по механике (свойства тканей, движение, упругие свойства сосудов и сердца и т. д.) дает возможность рассматривать физиологические процессы; об электромагнитном поле биосферы - для объяснения физиологических функций организмов. Такое же значение имеют и многие вопросы биохимии. Изучение сложных биологических систем (биогеоценозы, биосфера) связано с необходимостью усвоения знаний о способах обмена информацией между отдельными особями (химической, оптической, звуковой), но для этого опять же необходимо использовать знания по физике и химии.

Использование межпредметных связей - одна из наиболее сложных методических задач учителя химии. Она требует знания содержания программ и учебников по другим предметам. Реализация межпредметных связей в практике обучения предполагает сотрудничество учителя химии с учителями других предметов.

Учитель химии разрабатывает индивидуальный план реализации межпредметных связей в курсе химии. Методика творческой работы учителя в этом плане проходит следующие этапы:

  • 1. Изучение программы по химии, ее раздела «Межпредметные связи», программ и учебников по другим предметам, дополнительной научной, научно-популярной и методической литературы;
  • 2. Поурочное планирование межпредметных связей с использованием курсовых и тематических планов;
  • 3. Разработка средств и приемов реализации межпредметных связей на конкретных уроках (формулировка межпредметных познавательных задач, домашних заданий, подбор дополнительной литературы для учащихся, подготовка необходимых учебников и наглядных пособий по другим предметам, разработка методических приемов их использования);
  • 4. Разработка методики подготовки и проведения комплексных форм организации обучения (обобщающих уроков с межпредметными связями, комплексных семинаров, экскурсий, занятий кружка, факультатива по межпредметным темам и т.д.);
  • 5. Разработка приемов контроля и оценки результатов осуществления межпредметных связей в обучении (вопросы и задания на выявление умений учащихся устанавливать межпредметные связи).

Планирование межпредметных связей позволяет учителю успешно реализовать их методологические, образовательные, развивающие, воспитательные и конструктивные функции; предусмотреть всё разнообразие их видов на уроках, в домашней и внеклассной работе учащихся.

Для установления межпредметных связей необходимо осуществить отбор материалов, то есть определить те темы химии, которые тесно переплетаются с темами из курсов других предметов.

Курсовое планирование предполагает краткий анализ содержания каждой учебной темы курса с учетом внутрипредметных и межпредметных связей.

Для успешного осуществления межпредметных связей учитель химии, биологии и физики должен знать и уметь:

Когнитивный компонент

  • · содержание и структуру курсов смежных предметов;
  • · осуществлять согласование во времени изучения смежных предметов;
  • · теоретические основы проблемы МПС (виды классификаций МПС, способы их реализации, функции МПС, основные компоненты МПС и т. д.);
  • · обеспечивать преемственность в формировании общих понятий, изучении законов и теорий; использовать общие подходы к формированию умений и навыков учебного труда у учащихся, преемственности в их развитии;
  • · раскрывать взаимосвязи явлений различной природы, изучаемых смежными предметами;
  • · формулировать конкретные учебно-воспитательные задачи, исходя из целей МПС физики, химии, биологии;
  • · анализировать учебную информацию смежных дисциплин; уровень сформированности межпредметных знаний и умений у учащихся; эффективность применяемых методов обучения, форм учебных занятий, средств обучения на основе МПС.

Конструктивный компонент

  • · формировать систему целей и задач, способствующих реализации МПС;
  • · планировать учебно-воспитательную работу, направленную на реализацию МПС; выявлять воспитательные и развивающие возможности МПС;
  • · конструировать содержание межпредметных и интегративных уроков, комплексных семинаров и т.д. Предвидеть трудности и ошибки, которые могут возникнуть у учащихся при формировании межпредметных знаний и умений;
  • · конструировать методическое оснащение уроков, выбирать наиболее рациональные формы и методы обучения на основе МПС;
  • · планировать различные формы организации учебно-познавательной деятельности; конструировать дидактическое оснащение учебных занятий. Организационный компонент
  • · организовывать учебно-познавательную деятельность учащихся в зависимости от целей и задач, от их индивидуальных особенностей;
  • · формировать познавательный интерес учащихся к предметам естественного цикла на основе МПС;
  • · организовывать и руководить работой меж предметных кружков и факультативов; владеть навыками НОТ; методами управления деятельностью учащихся.

Коммуникативный компонент

  • · психологию общения; психолого-педагогические основы формирования межпредметных знаний и умений; психологические особенности учащихся;
  • · ориентироваться в психологических ситуациях в ученическом коллективе; устанавливать межличностные отношения в классе;
  • · устанавливать межличностные отношения с учителями смежных дисциплин в деятельности по совместной реализации МПС.

Ориентационный компонент

  • · теоретические основы деятельности по установлению МПС при изучении предметов естественного цикла;
  • · ориентироваться в учебном материале смежных дисциплин; в системе методов и форм обучения, способствующих успешной реализации МПС.

Мобилизационный компонент

  • · адаптировать педагогические технологии для реализации МПС физики, химии, биологии; предложить авторскую или подобрать наиболее адекватную методику формирования межпредметных знаний и умений в процессе обучения физике, химии, биологии;
  • · разработать авторскую или адаптировать традиционные методики решения задач межпредметного содержания;
  • · овладеть методикой проведения комплексных форм учебных занятий; уметь организовать самообразовательную деятельность по овладению технологией реализации МПС в обучении физике, химии и биологии.

Исследовательский компонент

  • · анализировать и обобщать опыт своей работы по реализации МПС; обобщать и внедрять опыт своих коллег; провести педагогический эксперимент, анализ своих результатов;
  • · организовать работу по методической теме МПС.

Данную профессиограмму можно рассматривать и как основу для построения процесса подготовки учителей физики, химии и биологии к деятельности по реализации МПС, и как критерий для оценки качества их подготовки.

Использование в изучении химии межпредметных связей позволяет с первого курса ознакомить студентов с предметами, которые они будут изучать на старших курсах: электротехника, менеджмент, экономика, материаловедение, детали машин, промышленная экология и т.д. Указывая на уроках химии, для чего и в каких предметах студентам пригодятся те или иные знания, педагог мотивирует запоминание материала не только на один урок, для получения оценки, но и изменяет личностные интересы студентов нехимических специальностей.

Взаимосвязь химии и физики

Наряду с процессами дифференциации самой химической науки, в настоящее время идут в интеграционные процессы химии с другими отраслями естествознания. Особенно интенсивно развиваются взаимосвязи между физикой и химией. Этот процесс сопровождается возникновением все новых и новых смежных физико-химических отраслей знания.

Вся история взаимодействия химии я физики полна примеров обмена идеями, объектами и методами исследования. На разных этапах своего развития физика снабжала химию понятиями и теоретическими концепциями, оказавшими сильное воздействие на развитие химии. При этом, чем больше усложнялись химические исследования, тем больше аппаратура и методы расчетов физики проникали в химию. Необходимость измерения тепловых эффектов реакции, развитие спектрального и рентгеноструктурного анализа, изучение изотопов и радиоактивных химических элементов, кристаллических решеток вещества, молекулярных структур потребовали создания и привели к использованию сложнейших физических приборов эспектроскопов, масс-спектрографов, дифракционных решеток, электронных микроскопов и т.д.

Развитие современной науки подтвердило глубокую связь между физикой и химией. Связь эта носит генетический характер, то есть образование атомов химических элементов, соединение их в молекулы вещества произошло на определенном этапе развития неорганического мира. Также эта связь основывается на общности строения конкретных видов материи, в том числе и молекул веществ, состоящих в конечном итоге из одних и тех же химических элементов, атомов и элементарных частиц. Возникновение химической формы движения в природе вызвало дальнейшее развитие представлений об электромагнитном взаимодействии, изучаемом физикой. На основе периодического закона ныне осуществляется прогресс не только в химии, но и в ядерной физике, на границе которой возникли такие смешанные физико-химические теории, как химия изотопов, радиационная химия.

Химия и физика изучают практически одни и те же объекты, но только каждая из них видит в этих объектах свою сторону, свой предмет изучения. Так, молекула является предметом изучения не только химии, но и молекулярной физики. Если первая изучает ее с точки зрения закономерностей образования, состава, химических свойств, связей, условий ее диссоциации на составляющие атомы, то последняя статистически изучает поведение масс молекул, обусловливающее тепловые явления, различные агрегатные состояния, переходы из газообразной в жидкую и твердую фазы и обратно, явления, не связанные с изменением состава молекул и их внутреннего химического строения. Сопровождение каждой химической реакции механическим перемещением масс молекул реагентов, выделение или поглощение тепла за счет разрыва или образования связей в новых молекулах убедительно свидетельствуют о тесной связи химических и физических явлений. Так, энергетика химических процессов тесно связана с законами термодинамики. Химические реакции, протекающие с выделением энергии обычно в виде тепла и света, называются экзотермическими. Существуют также эндотермические реакции, протекающие с поглощением энергии. Все сказанное не противоречит законам термодинамики: в случае горения энергия высвобождается одновременно с уменьшением внутренней энергии системы. В эндотермических реакциях идет повышение внутренней энергии системы за счет притока тепла. Измеряя количество энергии, выделяющейся при реакции (тепловой эффект химической реакции), можно судить об изменении внутренней энергии системы. Он измеряется в килоджоулях на моль (кДж/моль).

Еще один пример. Частным случаем первого начала термодинамики является закон Гесса. Он гласит, что тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса. Закон Гесса позволяет вычислить тепловой эффект реакции в тех случаях, когда его непосредственное измерение почему-либо неосуществимо.

С возникновением теории относительности, квантовой механики и учения об элементарных частицах раскрылись еще более глубокие связи между физикой и химией. Оказалось, что разгадка объяснения существа свойств химических соединений, самого механизма превращения веществ лежит в строении атомов, в квантово-механических процессах его элементарных частиц и особенно электронов внешней оболочки, Именно новейшая физика сумела решить такие вопросы химии, как природа химической связи, особенности химического строения молекул органических и неорганических соединений и т.д.

В сфере соприкосновения физики и химии возник и успешно развивается такой сравнительно молодой раздел из числа основных разделов химии как физическая химия, которая оформилась в конце XIX в. в результате успешных попыток количественного изучения физических свойств химических веществ и смесей, теоретического объяснения молекулярных структур. Экспериментальной и теоретической базой для этого послужили работы Д.И. Менделеева (открытие Периодического закона), Вант-Гоффа (термодинамика химических процессов), С. Аррениуса (теория электролитической диссоциации) и т.д. Предметом ее изучения стали общетеоретические вопросы, касающиеся строения и свойств молекул химических соединений, процессов превращения веществ в связи с взаимной обусловленностью их физическими свойствами, изучение условий протекания химических реакций и совершающихся при этом физических явлений. Сейчас физхимия - это разносторонне разветвленная наука, тесно связывающая физику и химию.

В самой физической химии к настоящему времени выделились и вполне сложились в качестве самостоятельных разделов, обладающих своими особыми методами и объектами исследования, электрохимия, учение о растворах, фотохимия, кристаллохимия. В начале XX в. выделилась также в самостоятельную науку выросшая в недрах физической химии коллоидная химия. Со второй половины XX в. в связи с интенсивной разработкой проблем ядерной энергии возникли и получили большое развитие новейшие отрасли физической Химии - химия высоких энергий, радиационная химия (предметом ее изучения являются реакции, протекающие под действием ионизирующего излучения), химия изотопов.

Физическая химия рассматривается сейчас как наиболее широкий общетеоретический фундамент всей химической науки. Многие ее учения и теории имеют большое значение для развития неорганической и особенно органической химии. С возникновением физической химии изучение вещества стало осуществляться не только традиционными химическими методами исследования, не только с точки зрения его состава и свойств, но и со стороны структуры, термодинамики и кинетики химического процесса, а также со стороны связи и зависимости последнего от воздействия явлений, присущих другим формам движения (световое и радиационное облучение, световое и тепловое воздействие и т.д.).

Примечательно, что в первой половине XX в. сложилась пограничная между химией и новыми разделами физики (квантовая механика, электронная теория атомов и молекул) наука, которую стали позднее называть химической физикой. Она широко применила теоретические и экспериментальные методы новейшей физики к исследованию строения химических элементов и соединений и особенно механизма реакций. Химическая физика изучает взаимосвязь и взаимопереход химической и субатомной форм движения материи.

В иерархии основных наук, данной Ф. Энгельсом, химия непосредственно соседствует с физикой. Это соседство и обеспечило ту быстроту и глубину, с которой многие разделы физики плодотворно вклиниваются в химию. Химия граничит, с одной стороны, с макроскопической физикой - термодинамикой, физикой сплошных сред, а с другой - с микрофизикой - статической физикой, квантовой механикой.

Общеизвестно, сколь плодотворными эти контакты оказались для химии. Термодинамика породила химическую термодинамику - учение о химических равновесиях. Статическая физика легла в основу химической кинетики - учения о скоростях химических превращений. Квантовая механика вскрыла сущность Периодического закона Менделеева. Современная теория химического строения и реакционной способности - это квантовая химия, т.е. приложение принципов квантовой механики к исследованию молекул и «X превращений».

Еще одним свидетельством плодотворности влияния физики на химическую науку является все расширяющееся применение физических методов в химических исследованиях. Поразительный прогресс в этой области особенно отчетливо виден на примере спектроскопических методов. Еще совсем недавно из бесконечного диапазона электромагнитных излучений химики использовали лишь узкую область видимого и примыкающего к нему участков инфракрасного и ультрафиолетового диапазонов. Открытие физиками явления магнитного резонансного поглощения привело к появлению спектроскопии ядерного магнитного резонанса, наиболее информативного современного аналитического метода и метода изучения электронного строения молекул, и спектроскопии электронного парамагнитного резонанса, уникального метода изучения нестабильных промежуточных частиц - свободных радикалов. В коротковолновой области электромагнитных излучений возникла рентгеновская и гамма-резонансная спектроскопия, обязанная своим появлением открытию Мессбауэра. Освоение синхротронного излучения открыло новые перспективы развития этого высокоэнергетического раздела спектроскопии.

Казалось бы, освоен весь электромагнитный диапазон, и в этой области трудно ждать дальнейшего прогресса. Однако появились лазеры - уникальные по своей спектральной интенсивности источники - и вместе с ними принципиально новые аналитические возможности. Среди них можно назвать лазерный магнитный резонанс - быстро развивающийся высокочувствительный метод регистрации радикалов в газе. Другая, поистине фантастическая возможность - это штучная регистрация атомов с помощью лазера - методика, основная на селективном возбуждении, позволяющая зарегистрировать в кювете всего несколько атомов посторонней примеси. Поразительные возможности для изучения механизмов радикальных реакций дало открытие явления химической поляризации ядер.

Сейчас трудно назвать область современной физики, которая бы прямо или косвенно не оказывала влияние на химию. Взять, например, далекую от мира молекул, построенного из ядер и электронов, физику нестабильных элементарных частиц. Может показаться удивительным, что на специальных международных конференциях обсуждается химическое поведение атомов, имеющих в своем составе позитрон или мюон, которые, в принципе, не могут дать устойчивых соединений. Однако уникальная информация о сверхбыстрых реакциях, Которую такие атомы позволяют получать, полностью оправдывает этот интерес.

Оглядываясь на историю взаимоотношений физики и химии, мы видим, что физика играла важную, подчас решающую роль в развитии теоретических концепций и методов исследования в химии. Степень признания этой роли можно оценить, просмотрев, например, список лауреатов Нобелевской премии по химии. Не менее трети в этом списке - авторы крупнейших достижений в области физической химии. Среди них - те, кто открыл радиоактивность и изотопы (Резерфорд, М. Кюри, Содди, Астон, Жолио-Кюри и др.), заложил основы квантовой химии (Полинг и Малликен) и современной химической кинетики (Хиншелвуд и Семенов), развил новые физические методы (Дебай, Гейеровский, Эйген, Норриш и Портер, Герцберг).

Наконец, следует иметь в виду и то решающее значение, которое начинает играть в развитии науки производительность труда ученого. Физические методы сыграли и продолжают играть в этом отношении в химии революционизирующую роль. Достаточно сравнить, например, время, которое затрачивал химик-органик на установление строения синтезированного соединения химическими средствами и которое он затрачивает теперь, владея арсеналом физических методов. Несомненно, что этот резерв применения достижений физики используется далеко не достаточно.

Подведем некоторые итоги. Мы видим, что физика во все большем масштабе, и все более плодотворно вторгается в химию. Физика вскрывает сущность качественных химических закономерностей, снабжает химию совершенными инструментами исследования. Растет относительный объем физической химии, и не видно причин, которые могут замедлить этот рост.

Взаимосвязь химии и биологии

Общеизвестно, что химия и биология долгое время шли каждая своим собственным путем, хотя давней мечтой химиков было создание в лабораторных условиях живого организма.

Резкое укрепление взаимосвязи химии с биологией произошло в результате создания А.М. Бутлеровым теория химического строения органических соединений. Руководствуясь этой теорией, химики-органики вступили в соревнование с природой. Последующие поколения химиков проявили большую изобретательность, труд, фантазию и творческий поисках направленном синтезе вещества. Их замыслом было не только подражать природе, они хотели превзойти ее. И сегодня мы можем уверенно заявить, что во многих случаях это удалось.

Поступательное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке, над вопросами о характере химических процессов в живых тканях, об обусловленности биологических функций химическими реакциями.

Если посмотреть на обмен веществ в организме с чисто химической точки зрения, как это сделал А.И. Опарин, мы увидим совокупность большого числа сравнительно простых и однообразных химических реакций, которые сочетаются между собой во времени, протекают не случайно, а в строгой последовательности, в результате чего образуются длинные цепи реакций. И этот порядок закономерно направлен, к постоянному самосохранению и самовоспроизведению всей живой системы в целом в данных условиях окружающей среды.

Словом, такие специфические свойства живого, как рост, размножение, подвижность, возбудимость, способность реагировать на изменения внешней среды, связаны с определенными комплексами химических превращений.

Значение химии среди наук, изучающих жизнь, исключительно велико. Именно химией выявлена важнейшая роль хлорофилла как химической основы фотосинтеза, гемоглобина как основы процесса дыхания, установлена химическая природа передачи нервного возбуждения, определена структура нуклеиновых кислот и т.д. Но главное заключается в том, что объективно в самой основе биологических процессов, функций живого лежат химические механизмы. Все функции и процессы, происходящие в живом организме, оказывается возможным изложить на языке химии, в виде конкретных химических процессов.

Разумеется, было бы неверным сводить явления жизни к химическим процессам. Это было бы грубым механистическим упрощением. И ярким свидетельством этого выступает специфика химических процессов в живых системах по сравнению с неживыми. Изучение этой специфики раскрывает единство и взаимосвязь химической и биологической форм движения материи. Об этом же говорят и другие науки, возникшие на стыке биологии, химии и физики: биохимия - наука об обмене веществ и химических процессов в живых организмах; биоорганическая химия - наука о строении, функциях и путях синтеза соединений, составляющих живые организмы; физико-химическая биология как наука о функционировании сложных систем передачи информации и регулировании биологических процессов на молекулярном уровне, а также биофизика, биофизическая химия и радиационная биология.

Крупнейшими достижениями этого процесса стали определение химических продуктов клеточного метаболизма (обмена веществ в растениях, животных, микроорганизмах), установление биологических путей и циклов биосинтеза этих продуктов; был реализован их искусственный синтез, сделано открытие материальных основ регулятивного и наследственного молекулярного механизма, а также в значительной степени выяснено значение химических процессов» энергетике процессов клетки и вообще живых организмов.

Ныне для химии особенно важным становится применение биологических принципов, в которых сконцентрирован опыт приспособления живых организмов к условиям Земли в течение многих миллионов лет, опыт создания наиболее совершенных механизмов и процессов. На этом пути есть уже определенные достижения.

Более столетия назад ученые поняли, что основой исключительной эффективности биологических процессов является биокатализ. Поэтому химики ставят своей целью создать новую химию, основанную на каталитическом опыте живой природы. В ней появится новое управление химическими процессами, где начнут применяться принципы, синтеза себе подобных молекул, по принципу ферментов будут созданы катализаторы с таким разнообразием качеств, которые далеко превзойдут существующие в нашей промышленности.

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому все попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире сталкиваются с серьезными ограничениями. Пока речь может идти только о моделировании некоторых функций ферментов и использовании этих моделей для теоретического анализа деятельности живых систем, а также частично-практического применения выделенных ферментов для ускорения некоторых химических реакций.

Здесь самым перспективным направлением, очевидно, являются исследования, ориентированные на применение принципов биокатализа в химии и химической технологии, для чего нужно изучить весь каталитический опыт живой природы, в том числе и опыт формирования самого фермента, клетки и даже организма.

Теория саморазвития элементарных открытых каталитических систем, в самом общем виде выдвинутая профессором МГУ А.П. Руденко в 1964 г., является общей теорией химической эволюции и биогенеза. Она решает вопросы о движущих силах и механизмах эволюционного процесса, то есть о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Теоретическим ядром этой теории является положение о том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы. В ходе реакции происходит естественный отбор тех каталитических центров, которые обладают наибольшей активностью. Саморазвитие, самоорганизация и самоусложнение каталитических систем происходит за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальные эволюционные преимущества получают каталитические системы, развивающиеся на базе экзотермических реакций. Отсюда базисная реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.

Развивая эти взгляды, А.П. Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью образуются те пути эволюционных изменений катализатора, на которых происходит максимальное увеличение его абсолютной активности.

Практическим следствием теории саморазвития открытых каталитических систем является так называемая «нестационарная технология», то есть технология с меняющимися условиями реакции. Сегодня исследователи приходят к выводу, что стационарный режим, надежная стабилизация которого казалась залогом высокой эффективности промышленного процесса, является лишь частным случаем нестационарного режима. При этом обнаружено множество нестационарных режимов, способствующих интенсификации реакции.

В настоящее время уже видны перспективы возникновения и развития новой химии, на основе которой будут созданы малоотходные, безотходные и энергосберегающие промышленные технологии.

Сегодня химики пришли к выводу, что, используя те же принципы, на которых построена химия организмов, в будущем (не повторяя в точности природу) можно будет построить принципиально новую химию, новое управление химическими, процессами, где начнут применяться принципы синтеза себе подобных молекул. Предвидится создание преобразователей, использующих с большим КПД солнечный свет, превращая его в химическую и электрическую энергию, а также химическую энергию в свет большой интенсивности.

Заключение

Современная химия представлена множеством различных направлений развития знаний о природе вещества и способах его преобразования. В то же время химия является не просто суммой знаний о веществах, а высоко упорядоченной, постоянно развивающейся системой знаний, имеющей свое место в ряду других естественных наук.

Химия изучает качественное многообразие материальных носителей химических явлений, химической формы движения материи. Хотя структурно она пересекается в определенных областях и с физикой, и с биологией, и с другими естественными науками, но сохраняет при этом свою специфику.

Одним из наиболее существенных объективных оснований выделения химии в качестве самостоятельной естественнонаучной дисциплины является признание специфичности химизма взаимоотношения веществ, проявляющегося, прежде всего, в комплексе сил и различных типов взаимодействий, обусловливающих существование двух и многоатомных соединений. Этот комплекс принято характеризовать как химическую связь, возникающую либо разрывающуюся в ходе взаимодействия частиц атомного уровня организации материи. Для возникновения химической связи характерно значительное перераспределение электронной плотности по сравнению с простым положением электронной плотности несвязанных атомов или атомных фрагментов, сближенных на расстояние связи. Эта особенность наиболее точно отделяет химическую связь от разного рода проявлений межмолекулярных взаимодействий.

Происходящее ныне неуклонное возрастание в рамках естествознания роли химии как науки сопровождается быстрым развитием фундаментальных, комплексных и прикладных исследований, ускоренной разработкой новых материалов с заданными свойствами и новых процессов в области технологии производства и переработки веществ.

В древнем мире науки о природе именовали по-гречески физис , отсюда и пошло современное название основополагающей естественной науки – физики. Под физисом понимались знания человека об окружающем его мире. В Европе научные знания было принято называть натурфилософией , поскольку они формировались в эпоху, когда главной из наук считалась философия; в Германии XIX в. натурфилософией назывались все естественные науки в целом.

В современном мире под естествознанием понимают либо-либо: а) единую науку о природе в целом; б) всю совокупность наук о природе. В любом случае предметом изучения естествознания выступает природа, понимаемая как окружающий человека мир и сам человек в том числе.

К естественным наукам относят физику, химию, биологию, космологию, астрономию, географию, геологию, психологию (не полностью) и так называемые стыковые науки – астрофизику, биофизику, биохимию и т. п. и прикладные – географию, геохимию, палеонтологию и т. д.

Изначально перед естествознанием стояли задачи познания окружающего мира и его объективных законов. В древности этим занималась математика и философия, позже – математика, химия и физика, а после разделения научного знания на более узкие науки – все перечисленные выше и более узкие из неперечисленных.

Условно говоря, естествознание было призвано решить ряд загадок или так называемых вечных вопросов: о происхождении мира и человека, об уровнях устройства мира, о преобразовании мертвого в живое и, наоборот, о векторе направления времени, о возможности сверхдальних путешествий в пространстве и т. п. На каждом этапе развития знания оказывалось, что задачи решены только частично. И каждый новый этап знания приближал решение, но задач так и не смог решить.

В современном естествознании под комплексом задач понимается познание объективных законов природы и содействие их практическому использованию в интересах человека, при этом практическая ценность полученного знания оказывается решающим фактором, что определяет вопросы финансирования: перспективные отрасли науки получают хорошее финансирование, неперспективные из-за слабого финансирования развиваются медленнее.

2. Взаимосвязь естественных наук

Все явления в мире связаны друг с другом, поэтому естественны тесные связи между науками о природе. Любой живой и неживой объект окружающего мира можно описать математически (величина, вес, объем, соотношение между этими категориями), физически (свойства вещества, жидкости, газа, из которых он состоит), химически (свойства происходящих в нем химических процессов и реакции вещества объекта) и т. п.

Иными словами, объекты окружающего мира, будь они живые или неживые, подчиняются открытым человеком законам существования этого мира – физическим, математическим, химическим, биологическим и т. п. На протяжении длительного времени бытовал упрощенный взгляд на сложные живые объекты и явления, к ним пробовали применять те же законы, что существуют в неживой природе, поскольку понять и описать процессы в живых организмах ученые могли только с механистической точки зрения.

Это был упрощенный, хотя для того времени вполне научный взгляд; мы называем его редукционным .

В современном научном знании, напротив, существует другой подход – целостный, или холистический . В сложных объектах и явлениях действуют все известные человеку законы природы, но они действуют не отдельно, а в синтезе, поэтому и рассматривать их изолированно друг от друга не имеет смысла. Редукционный подход определял применение аналитического метода, то есть предполагал разложение сложного объекта на мельчайшие составляющие, холистический предполагает исследование объекта как совокупность всех его составляющих, что требует изучения на гораздо более сложном уровне всех существующих связей. Оказалось, что даже для изучения неживой материи недостаточно опираться на известные законы физики и химии, а требуется создавать новые теории, рассматривающие такие объекты с новой точки зрения. Известные законы в результате этого отменены не были, а новые теории открыли новые горизонты знаний и способствовали рождению новых отраслей естественных наук (например, квантовой физики).

3. Деление естественных наук на фундаментальные и прикладные

Естественные науки можно разделить на фундаментальные и прикладные. Прикладные науки решают некий общественный заказ, то есть их существование направлено на выполнение задания от общества, востребованного на данном этапе его развития. Фундаментальные науки никакого заказа не выполняют, они заняты получением знания о мире, так как получение такого знания – их прямая обязанность.

Фундаментальными они называются потому, что являются тем фундаментом, на котором строятся прикладные науки и научно-технические изыскания (или технологии). В обществе к фундаментальным исследованиям всегда существует скептическое отношение, и это понятно: они не приносят необходимых дивидендов немедленно, так как опережают развитие существующих в обществе прикладных наук, и это запаздывание «полезности» обычно выражается в десятилетиях, а иногда и столетиях. Открытие Кеплером законов взаимосвязи орбиты космических тел и их массы не принесло современной ему науке никакой пользы, но с развитием астрономии, а затем и космических исследований стало актуальным.

Фундаментальные открытия с течением времени становятся базой для создания новых наук или отраслей существующих наук и способствуют научно-техническому прогрессу человечества. Прикладные науки прочно связаны с прогрессом таких знаний, они вызывают бурное развитие новых технологий.

Под технологиями в узком смысле принято понимать совокупность знаний о способах и средствах проведения производственных процессов, а также сами технологические процессы, при которых происходит качественное изменение обрабатываемого объекта; в широком смысле это обусловленные состоянием знаний и общественной эффективностью способы достижения целей, поставленных обществом.

В быту под технологиями понимаются технические устройства (еще более узкий смысл слова). Но в любом смысле технологии обеспечиваются прикладными науками, а прикладные науки обеспечиваются фундаментальными науками. И можно выстроить трехуровневую схему взаимосвязей: командные высоты займут фундаментальные науки, этажом ниже встанут прикладные науки, внизу окажутся технологии, которые без наук существовать не могут.

4. Естественнонаучная и гуманитарная культуры

Изначальное познание мира не было расчленено на естественнонаучное и художественное, в Греции натуральная философия изучала мир в комплексе, не пытаясь отделить материальное от духовного или духовное от материального. Этот процесс распадения знания на две части пошел в средневековой Европе (хотя и медленно) и достиг пика в эпоху Нового времени, когда произошедшие социальные революции привели к промышленным революциям и возросла ценность научного знания, поскольку оно и только оно способствовало прогрессу.

Духовная культура (искусство, литература, религия, мораль, мифология) материальному прогрессу способствовать не могла. Людям, финансирующим технологии, она была неинтересна. Другой причиной являлось то, что гуманитарная культура была пропитана религией и развитию естественнонаучного знания не помогала (скорее мешала). Бурно развиваясь, естественные науки очень быстро стали вычленять внутри себя все новые и новые отрасли, становящиеся самостоятельными науками. Единственной связью, которая не давала им распасться на изолированные и замкнутые на самих себя науки, была философия.

Философия была наукой гуманитарной по определению, но базовой для естественных дисциплин. Со временем в науках становилось все меньше философии и все больше расчетов и прикладных элементов. Если в средние века законы мироздания изучались с глобальной целью – познать мироустройство, данное людям богом, чтобы совершенствовать человека для жизни в мире, построенном богом, то в более позднее время гуманитарная составляющая ушла из естественных наук, они занялись добычей «чистого» знания и открытием «чистых» законов, исходя из двух принципов: дать ответ на вопрос «как это устроено» и дать совет «как это использовать для прогресса человечества».

Произошел раздел мыслящей части человечества на гуманитариев и ученых. Ученые стали презирать гуманитариев за неумение пользоваться математическим аппаратом, а гуманитарии стали видеть в ученых «сухарей», в которых не осталось ничего человеческого. Процесс достиг пика во второй половине XX в. Но затем стало ясно, что человечество вступило в экологический кризис, и гуманитарное знание необходимо как элемент для нормального функционирования естественных наук.

5. Этапы естественнонаучного познания природы

История развития научного знания – долгий и сложный процесс, который можно условно разделить на несколько этапов.

Первый этап охватывает период от за рождения натурфилософии до XV в. В этот период научное знание развивалось синкретически, то есть недифференцированно. Натурфилософия представляла мир как единое целое, царицей наук была философия. Основными методами натурфилософии были наблюдение и предположение. Постепенно, примерно к XIII веку, из натурфилософии стали выделяться узкоспециализированные области знаний – математика, физика, химия и т. п. К XV в. эти области знаний оформились в конкретные науки.

Второй этап – с XV по XVIII вв. На первое место в методах наук вышел анализ, попытка расчленить мир на все более мелкие составляющие части и изучить их. Главной проблемой этого времени стал поиск онтологической основы мира, структурированного из первобытного хаоса. Все более мелкое членение мира на части вызвало и более мелкое членение натурфилософии на отдельные науки, а тех – на еще более мелкие. (Из единой философической алхимии образовалась наука химия, которая затем разошлась на неорганическую и органическую, физическую и аналитическую и т. п.)

На втором этапе появился новый метод науки – эксперимент . Знания приобретались в основном эмпирически, то есть экспериментальным путем. Но внимание было направлено не на явления, а на объекты (предметы), благодаря чему природа воспринималась в статике, а не в изменении.

Третий этап охватывает XIX–XX вв. Это был период бурного прироста научного знания, бурного и короткого научного прогресса. За этот период человечество получило больше знаний, чем за всю историю существования науки. Этот период принято называть синтетическим, поскольку главным принципом этого времени является синтез .

С конца XX в. наука перешла на новый, интегрально-дифференциальный этап . Это объясняет появление универсальных теорий, совмещающих в себе данные различных наук с наличием очень сильной гуманитарной составляющей. Главным методом является соединение синтеза и эксперимента .

6. Формирование научной картины мира

Научный взгляд на мир так же, как и сама наука, прошел несколько этапов развития. Вначале преобладала механистическая картина мира , руководствовавшаяся правилом: если в мире существуют физические законы, то их можно применить к любому предмету мира и любому его явлению. В этой картине мира не могло быть никаких случайностей, мир твердо стоял на принципах классической механики и подчинялся законам классической механики.

Механистический взгляд на мир складывался в эпоху наличия религиозного сознания даже у самих ученых: основу мира они находили в Боге, законы механики воспринимались как законы Творца, мир рассматривался только как макромир, движение – как механическое движение, все механические процессы были обусловлены принципом сложного детерминизма, под которым в науке понимается точное и однозначное определение состояния любой механической системы.

Картина мира в ту эпоху выглядела как совершенный и точный механизм, подобный часам. В этой картине мира не было свободной воли, была судьба, не было свободы выбора, был детерминизм. Это был мир Лапласа.

Эту картину мира сменила электромагнетическая , в основе которой лежал не макромир, а поле и свойства только что открытых человеком полей – магнитного, электрического, гравитационного. Это был мир Максвелла и Фарадея. Ему на смену пришла картина квантового мира , рассматривавшего мельчайшие составляющие – микромир со скоростями частиц, близким к скорости света, и гигантские космические объекты – мегамир с огромными массами. Эта картина подчинялась релятивистской теории. Это был мир Эйнштейна, Гейзенберга, Бора. С конца XX в. появилась современная картина мира – информационная, синергетическая , построенная на основе самоорганизующихся систем (как живой, так и неживой природы) и теории вероятности. Это мир Стивена Хокинга и Билла Гейтса, мир складок пространства и искусственного интеллекта. Технологии и информация в этом мире решают все.

7. Глобальные естественнонаучные революции

Отличительная черта развития естествознания в том, что, длительно эволюционно развиваясь в рамках натурфилософии, затем оно развивалось путем резких революционных изменений – естественнонаучных революций . Для них характерны следующие черты: 1) развенчание и сброс старых идей, мешающих прогрессу; 2) совершенствование технической базы со стремительным расширением знаний о мире и зарождением новых идей; 3) появление новых теорий, понятий, принципов, законов науки (которые могут объяснить необъяснимые с точки зрения старых теорий факты) и быстрое признание их основополагающими. Революционные последствия может дать как деятельность одного ученого, так и деятельность коллектива ученых или всего общества в целом.

Революции в сфере естествознания могут относиться к одному из трех типов :

1) глобальные – затрагивают не одно какое-то явление или область знания, а все наше знание о мире целиком, формируя либо новые отрасли наук или новые науки, а иногда полностью переворачивая представление общества об устройстве мира и создавая другой способ мышления и другие ориентиры;

2) локальные – затрагивают одну область знания, одну фундаментальную науку, где коренным образом изменяется основополагающая идея, переворачивая базовые знания данной отрасли, но в то же время не затрагивая не то что основ, но и фактов в соседствующей области знания (например, теория Дарвина стерла аксиому биологии о неизменности видов живых существ, но никак не отразилась на физике, химии или математике);

3) частные – касаются отдельных нежизнеспособных, но широко распространенных теорий и понятий в какой-то области знания – они под напором фактов рушатся, но старые и не входящие в противоречия с новыми фактами теории остаются и плодотворно развиваются. Из новых идей может родиться не только новая теория, но и новая отрасль науки. Основополагающая идея в ней старых обоснованных теорий не отвергает, но создает настолько революционную, что она не находит места рядом со старыми и становится базой для новой научной отрасли.

8. Космология и естественнонаучные революции

Слом старого видения мира в естествознании всегда был тесно связан с космологическими и астрономическими знаниями. Космология, занятая вопросами происхождения мира и человека в нем, базировалась на существующих мифах и религиозных представлениях людей. Небо в их мировоззрении занимало ведущее место, поскольку все религия объявляли его местом, где живут боги, а видимые звезды считались воплощениями этих богов. Космология и астрономия и до сих пор тесно связаны, хотя научное знание избавилось от богов и перестало считать космос местом их обитания.

Первой космологической системой человека была топоцентрическая , то есть считавшая главным местом происхождения жизни поселение, где рождался миф о происхождении жизни, человеке и каком-то местном божке. Топоцентрическая система размещала центр происхождения жизни на планете. Мир был плоским.

С расширением культурных и торговых связей мест и божков стало слишком много, чтобы топоцентрическая схема могла существовать. Появилась геоцентрическая система (Анаксимандр, Аристотель и Птолемей), рассматривавшая вопрос происхождения жизни в глобальном, планетарном объеме и помещавшая Землю в центре известной человеку системы планет. В результате аристотелевой революции мир стал сферическим, а Солнце вращалось вокруг Земли.

Геоцентрическую сменила гелиоцентрическая система, в которой Земле отводилось рядовое место среди других планет, а источником жизни объявлялось Солнце, расположенное в центре Солнечной системы. Это была копернианская революция . Идеи Коперника способствовали избавлению от догматизма религии и появлению науки в современном ее виде (классическая механика, научные труды Кеплера, Галилея, Ньютона).

Современник Коперника Дж. Бруно выдвинул не оцененную в его время идею полицентризма – то есть множественности миров. Через несколько веков эта идея нашла воплощение в трудах Эйнштейна и релятивистской теории (теории относительности), появились космологическая модель однородной и изотропной Вселенной и квантовая физика.

Мир стоит на пороге новой глобальной революции естественных наук, должна родиться теория, связывающая общую теорию относительности со структурой материи.

9. Уровни научного познания

Современное естествознание оперирует двумя уровнями научного познания – эмпирическим и теоретическим.

Под эмпирическим уровнем познания подразумевается экспериментальное получение фактического материала. К эмпирическому познанию относятся чувственно-наглядные методы и способы познания (систематическое наблюдение, сравнение, аналогия и др.), которые приносят множество фактов, требующих обработки и систематизации (обобщения). На этапе эмпирического познания факты регистрируются, детально описываются и систематизируются. Для получения фактов производятся эксперименты с использованием регистрирующих приборов.

Хотя наблюдение подразумевает пользование человеком своими пятью органами чувств, ученые не доверяют непосредственным чувствам и ощущениям человека и для точности используют приборы, неспособные ошибаться. Но в качестве наблюдателя все равно присутствует человек, объективность эмпирического уровня не способна выключить субъективный фактор – наблюдателя. Для экспериментов характерны методы проверки и перепроверки данных.

Под теоретическим уровнем познания подразумевается обработка эмпирических результатов и создание теорий, которые могут данные объяснить. Именно на этом уровне происходит формулирование открытых учеными закономерностей и законов, а не просто повторяющихся последовательностей или разобщенных свойств каких-то явлений или предметов. Задача ученого – найти, объяснить и научно обосновать закономерности в материале, полученном эмпирическим путем, и создать на этой основе четкую и стройную систему мироустройства. Теоретический уровень познания имеет две разновидности: теории отвлеченные фундаментальные (лежащие в стороне от существующей действительности) и теории, направленные на конкретные области практического знания.

Эмпирическое и теоретическое знание связано друг с другом и не существует одно без другого: опыты ставятся, основываясь на существующих теориях; теории строятся, исходя из полученного экспериментального материала. Если он не соответствует существующим теориям, то либо неточен, либо требуется создание новой теории.

10. Общенаучные методы познания: анализ, синтез, обобщение, абстрагирование, индукция, дедукция

К общенаучным методам познания относятся анализ, синтез, обобщение, абстрагирование, индукция, дедукция, аналогия, моделирование, исторический метод, классификация.

Анализ – мысленное или реальное разложение объекта на составляющие его мельчайшие части. Синтез - объединение изученных в результате анализа элементов в единое целое. Анализ и синтез применяются как взаимодополняющие друг друга методы. В основе такого способа познания лежит желание разобрать нечто, чтобы понять, почему и как оно работает, и собрать снова, чтобы убедиться, что работает именно потому, что имеет изученное строение.

Обобщение – процесс мышления, заключающийся в переходе от единичного к целому, от частного к общему (в принципах формальной логики: Кай – человек, все люди – смертны, Кай – смертен).

Абстрагирование - процесс мышления, заключающийся в добавлении определенных изменений в изучаемый объект или исключении из рассмотрения некоторых свойств объектов, которые не считаются существенными. Абстракциями являются такие понятия, как

(в физике) материальная точка, обладающая массой, но лишенная остальных качеств, бесконечная прямая (в математике) и т. п. Индукция – процесс мышления, заключающийся в выведения общего положения из наблюдения ряда частных единичных фактов. Индукция может быть полной и неполной. Полная индукция предусматривает наблюдение всей совокупности объектов, из которого следуют общие выводы, но в экспериментах используется неполная индукция , делающая вывод о совокупности объектов, исходя из изучения части объектов. Неполная индукция предполагает, что вынесенные за скобки эксперимента аналогичные объекты обладают теми же свойствами, что и изученные, и это позволяет использовать экспериментальные данные для теоретического обоснования. Неполную индукцию принято называть научной. Дедукция – процесс мышления, заключающийся в проведении аналитического рассуждения от общего к частному. Дедукция базируется на обобщении, но проводимом от неких исходных общих положений, считающихся неоспоримыми, к частному случаю для получения истинно верного вывода. Наибольшее распространение дедуктивный метод получил в математике.

Химия – наука о превращениях веществ, связанных с изменением электронного окружения атомных ядер. В данном определении необходимо дополнительно уточнить термины «вещество» и «наука».

Согласно Химической энциклопедии:

Вещество – вид материи, которая обладает массой покоя. Состоит из элементарных частиц: электронов, протонов, нейтронов, мезонов и др. Химия изучает главным образом вещество, организованное в атомы, молекулы, ионы и радикалы. Такие вещества принято подразделять на простые и сложные (хим. соединения). Простые вещества образованы атомами одного хим. элемента и потому являются формой его существования в свободном состоянии, например, сера, железо, озон, алмаз. Сложные вещества образованы разными элементами и могут иметь состав постоянный.

В трактовке термина «наука» существует множество разногласий. Здесь вполне приложимо высказывание Рене Декарта (1596-1650): «Определите значение слов, и вы избавите человечество от половины его заблуждений». Наукой принято называть сферу человеческой деятельности, функцией которой является выработка и теоретическая схематизация объективных знаний о действительности; отрасль культуры, которая существовала не во все времена и не у всех народов. Канадский философ Уильям Хетчер определяет современную науку, как «способ познания реального мира, включающего в себя как ощущаемую органами чувств человека реальность, так и реальность невидимую, способ познания, основанный на построении проверяемых моделей этой реальности». Такое определение близко к пониманию науки академиком В.И.Вернадским, английским математиком А.Уайтхедом, другими известными учеными.

В научных моделях мира обычно выделяются три уровня, которые в конкретной дисциплине могут быть представлены в различном соотношении:

* эмпирический материал (экспериментальные данные);

* идеализированные образы (физические модели);

*математическое описание (формулы и уравнения).

Наглядно-модельное рассмотрение мира неизбежно ведет к приблизительности любой модели. А.Эйнштейн (1879-1955) говорил «Пока математические законы описывают действительность, они неопределенны, а когда они перестают быть неопределенными, они теряют связь с действительностью».

Химия относится к числу естественных наук, изучающих окружающий нас мир со всем богатством его форм и многообразием происходящих в нем явлений. Специфику естественнонаучного знания можно определить тремя признаками: истинность, интерсубъективность и системность. Истинность научных истин определяется принципом достаточного основания: всякая истинная мысль должна быть обоснована другими мыслями, истинность которых доказана. Интерсубъективность означает, что каждый исследователь должен получать одинаковые результаты при изучении одного и того же объекта в одних и тех же условиях. Системность научного знания подразумевает его строгую индуктивно-дедуктивную структуру.

Химия – это наука о превращениях веществ. Она изучает состав и строение веществ, зависимость свойств веществ от их состава и строения, условия и пути превращения одних веществ в другие. Химические изменения всегда связаны с изменениями физическими. Поэтому химия тесно связана с физикой. Химия также связана с биологией, поскольку биологические процессы сопровождаются непрерывными химическими превращениями.

Совершенствование методов исследования, прежде всего экспериментальной техники, привело к разделению науки на все более узкие направления. В результате количество и «качество», т.е. надежность информации возросли. Однако невозможность для одного человека обладать полными знаниями даже для смежных научных областей породила новые проблемы. Как в военной стратегии самые слабые места обороны и наступления оказываются на стыках фронтов, в науке наименее разработанными остаются области, не поддающиеся однозначной классификации. Среди прочих причин можно отметить и сложность с получением соответствующей квалификационной ступени (ученой степени) для ученых, работающих в областях «стыка наук». Но там же делаются и основные открытия современности.

В современной жизни, особенно в производственной деятельности человека, химия играет исключительно важную роль. Нет почти ни одной отрасли производства, не связанной с применением химии. Природа дает нам лишь исходное сырье – дерево, руду, нефть и др. Подвергая природные материалы химической переработке, получают различные вещества, необходимые для сельского хозяйства, промышленного производства, медицины, быта – удобрения, металлы, пластические массы, лаки, краски, лекарственные вещества, мыло и т.д. Для переработки природного сырья необходимо знать законы превращения веществ, а эти знания дает химия. Развитие химической промышленности – одно из важнейших условий технического прогресса.

Химические системы

Объект изучения в химии – химическая система . Химическая система – это совокупность веществ, находящихся во взаимодействии и мысленно или фактически обособленно от окружающей среды. Примерами системы могут служить совершенно разные объекты.

Простейшим носителем химических свойств служит атом – система, состоящая из ядра и движущихся вокруг него электронов. В результате химического взаимодействия атомов образуются молекулы (радикалы, ионы, атомные кристаллы) –системы, состоящие из нескольких ядер, в общем поле которых движутся электроны. Макросистемы состоят из совокупности большого количества молекул – растворы различных солей, смесь газов над поверхностью катализатора в химической реакции и т.д.

В зависимости от характера взаимодействия системы с окружающей средой различают открытые, закрытые и изолированные системы. Открытой системой называется система, способная обмениваться с окружающей средой энергией и массой. Например, при смешении в открытом сосуде соды с раствором соляной кислоты протекает реакция:

Na 2 CO 3 + 2HCl → 2NaCl + CO 2 + H 2 O.

Масса этой системы уменьшается (улетучивается углекислый газ и частично пары воды), часть выделившейся теплоты тратится на нагрев окружающего воздуха.

Закрытой называется система, которая может обмениваться с окружающей средой только энергией. Рассмотренная выше система, находящаяся в закрытом сосуде, будет примером закрытой системы. В этом случае обмен массой невозможен и масса системы остается постоянной, но теплота реакции через стенки пробирки передается окружающей среде.

Изолированной системой называется система постоянного объема, в которой не происходит обмена с окружающей средой ни массой, ни энергией. Понятие изолированной системы является абстрактным, т.к. на практике абсолютно изолированной системы не существует.

Отдельная часть системы, ограниченная от других хотя бы одной поверхностью раздела, называется фазой . Например, система, состоящая из воды, льда и пара, включает три фазы и две поверхности раздела (рис. 1.1). Фаза может быть механически отделена от других фаз системы.

Рис.1.1 – Многофазная система.

Не всегда фаза на всем протяжении одинаковые физические свойства и однородный химический состав. Примером может служить атмосфера земли. В нижних слоях атмосфера концентрация газов выше, выше и температура воздуха, в верхних же слоях происходит разрежение воздуха и понижение температуры. Т.е. однородность химического состава и физических свойств на протяжении всей фазы в данном случае не соблюдается. Также фаза может быть прерывной, например, кусочки льда, плавающие на поверхности воды, туман, дым, пена – двухфазные системы, в которых одна фаза является прерывной.

Система, состоящая из веществ, находящихся в одной фазе, называется гомогенной . Система, состоящая из веществ в разных фазах и имеющая хотя бы одну границу раздела, называется гетерогенной .

Вещества, из которых состоит химическая система – компоненты. Компонент может быть выделен из системы и существовать вне ее. Например, известно, что при растворении хлорида натрия в воде он распадается на ионы Na + и Cl – , однако эти ионы не могут считаться компонентами системы – раствора соли в воде, т.к. они не могут быть выделены из данного раствора и существовать по отдельности. Компонентами будут вода и хлорид натрия.

Состояние системы определяется ее параметрами. Параметра могут быть заданы как на молекулярном уровне (координаты, количество движения каждой из молекул, валентные углы и пр.), так и на макроуровне (например, давление, температура).

Строение атома.


Похожая информация.


У них отсутствует научное понимание закономерностей развития окружающего мира, умение комплексно применять знания, полученные ими при изучении основ естественных наук в школе. В преодолении этих недостатков в условиях традиционно сложившейся системы изучения основ естественных наук в школе большая роль отводится межпредметным связям.

В большинстве случаев учителя ограничиваются лишь фрагментарным включением МПС. Учителя редко включают учащихся в самостоятельную работу по применению межпредметных знаний и умений при изучении программного материала, а также в процессе самостоятельного переноса ранее усвоенных знаний в новую ситуацию. Следствие - неумение ребят осуществлять перенос и синтез знаний из смежных предметов.

Нет и преемственности в обучении. Так, учителя биологии непрерывно "забегают вперед", знакомя учащихся с различными физико-химическими процессами, протекающими в живых организмах, без опоры на физические и химические понятия.

Решение межпредметных задач требует особых умений: связывать между собой и обобщать предметные знания, видеть объект в единстве его многообразных свойств и отношений, оценивать частное с позиций общего, что обеспечивает формирование научного мировоззрения школьников.

Умения комплексной многосторонней характеристики объекта — это наиболее сложный вид умений. Это умения учащихся осуществлять комплексные межпредметные связи. Специфичным для них является познавательное действие широкого переноса предметных знаний и умений в новые условия их комплексного применения. Такие умения в своей содержательной основе опираются на знания из разных учебных предметов и обобщенные идеи, а их операционная сторона имеет сложную структуру действий разной степени обобщенности.

Межпредметные связи усложняют содержание и процесс познавательной деятельности учащихся. Поэтому необходимо постепенное введение как элементов проблемности, так и объема и сложности межпредметных связей. Важно обеспечить рост познавательных умений и учебных успехов, укрепляющих самостоятельность и интерес учащихся к познанию связей между знаниями из разных предметов. Методика организации процесса обучения осуществляется следующими этапами:

  1. односторонние МПС на уроках по смежным предметам на основе репродуктивного обучения и элементов проблемности;
  2. усложнение межпредметных познавательных задач и усиление самостоятельности учащихся в поиске их решения;
  3. включение двусторонних, а затем и многосторонних связей между предметами путем координации деятельности учителей (выдвижение общих учебных проблем, их поэтапное решение в системе уроков);
  4. разработка широкой системы в работе учителей, осуществляющих МПС как в содержании и методах, так и в формах организации обучения (комплексные домашние задания, уроки, семинары, экскурсии, конференции), включая внеклассную работу и расширяя рамки учебной программы.

Для тех учеников, которые не имеют прочной системы знаний, решение межпредметных задач может оказаться непосильным, а их интерес к обучению снизится. Для учащихся с высоким уровнем знаний по предметам опора на межпредметные связи является необходимым условием их дальнейшего развития в процессе обучения. Поэтому в организации творческой деятельности учащихся на основе МПС ведущее место занимает учебная работа, направленная на усвоение системы предметных знаний и овладение способами их переноса и обобщения.

«Научение» учащихся достигается с помощью системы тренировочных самостоятельных работ, отрабатывающих отдельные элементы умений комплексного применения знаний: распознавание МПС в учебных текстах, в отрывках из научных статей, в первоисточниках отбор фактического предметного материала для подтверждения, доказательства законов диалектики, общенаучных идей, понятий; анализ конкретных примеров (из области биологии, физики, химии, истории) с позиций общих закономерностей, категорий; осознание межпредметного характера познавательных учебных задач; самостоятельная постановка (видение) межпредметных задач, проблем на основе сравнения и анализа научных фактов пограничных предметов (биохимических, физико-химических, биофизических и т. п.); составление плана для решения межпредметной проблемы и др.

Важную роль играют показ образца выполнения таких заданий, проведение установочных бесед, определяющих логику рассуждения, доводящих до осознания последовательность выполняемых действий, дифференцированный подход с учетом познавательных интересов и возможностей учащихся. Необходимы последовательные стадии в формировании умений осуществлять межпредметные связи:

  1. пробуждение познавательного интереса учащихся к решению межпредметных задач, их распознавание и осознание ими необходимости использовать знания из разных дисциплин;
  2. отработка отдельных способов творческой деятельности на основе межпредметных связей;
  3. синтез частных умений в целостное умение комплексного применения знаний при решении межпредметных задач. Основным условием успешного переноса предметных знаний выступают сходство, аналогичность структуры содержательных и процессуальных элементов в серии межпредметных познавательных задач определенного типа. На уроках необходимо побуждать учащихся к самостоятельному решению таких задач с выполнением ими действий по образцу и усвоением обобщенных ориентиров в синтезе знаний.

Взаимодействие интереса и умений в процессе решения межпредметных задач.

Развитие познавательных интересов зависит от овладения учащимися обобщенными умениями поисковой деятельности и умениями осуществлять МПС. Изучение психологии мышления доказало, что в качестве внутреннего побудителя поисковой деятельности, действующего сопряжено со знаниями и способами, выступает осознание цели, познавательной потребности, которая регулирует процесс поиска, отражаясь и на его эмоциональной насыщенности. Принятие межпредметной задачи в значительной мере зависит от теоретической направленности познавательных интересов ученика, его стремления к познанию философских, мировоззренческих аспектов в предметных знаниях.

Осознанное вычленение межпредметной задачи, являясь одним из проявлений творческих действий учащихся, способствует тесной корреляции знаний и способов действий в структуре умений ее решать. Вычисление коэффициентов корреляции показало тесную связь между уровнями знаний и способов действий в работах учащихся, самостоятельно выделивших межпредметную познавательную задачу.

В процесс решения межпредметной познавательной задачи учащиеся включают предметные умения, их активность зависит и от мотива интереса к соответствующим учебным дисциплинам. Здесь также наблюдается тесная связь между уровнем интереса к предмету, широтой и успешностью использования знаний из него. Учащиеся привлекают новые сведения из дополнительных источников информации, находят оригинальные способы их анализа и связи с программным материалом. Отсутствие устойчивых предметных интересов и знаний лишает ученика основы в «межпредметной» деятельности, вызывая подчас негативное отношение к ней.

Межпредметные связи на первых этапах включения в познавательную деятельность изменяют соответствие уровней умений и интересов учащихся по предметам. Умения, проявляемые при решении межпредметных задач, начинают в большей степени зависеть от опыта переноса, овладения его способами, чем от ранее сложившегося, но тем не менее подвижного интереса к тому или иному предмету. У одних учащихся под влиянием межпредметных связей повышается интерес к ранее не интересовавшим их предметам, а уровень знаний и умений еще остается невысоким. У других, наоборот, значительно возрастают умения межпредметного переноса, но заметных изменений в развитии предметных интересов не наблюдается. Они сохраняют устойчивость. Это объясняется тем, что МПС не являются единственным фактором, формирующим познавательные интересы учащихся.

Познавательный опыт, ограниченный узкопредметными рамками, мешает увидеть хорошо известное в новом, необычном аспекте, необходимом для творческого решения межпредметной задачи. Возникающее на первых этапах познавательной деятельности на основе межпредметных связей рассогласование между ранее сформировавшимися умениями и интересами учащихся в последующем нивелируется, происходит усиление взаимосвязей умений и интереса на качественно новой обобщенной содержательной основе. Систематически включаемые в учебное познание МПС положительно изменяют широту и диапазон применения знаний и умений. Это способствует умственному развитию школьников и формированию широких познавательных интересов как одному из показателей развития личности. В деятельности на основе МПС возникает устойчивая зависимость: широта познавательных интересов - осознанное восприятие межпредметных задач - потребность в познании межпредметных связей - творческий подход - умение мыслить системно - познавательная самостоятельность ученика.

Формирование мировоззренческой направленности познавательных интересов старшеклассников.

Включение в процесс обучения межпредметных связей как стимула познавательного интереса качественно преобразует другие его стимулы. Это происходит в силу того, что учебный процесс представляет собой систему, в которой все компоненты находятся в структурно-функциональной связи и изменение одного из них нарушает эти связи и вызывает необходимость системного подхода к организации всего процесса. Включаемые в содержание урока межпредметные связи усиливают его новизну, вызывают обновление уже известного материала, объединяют новые и прежние знания в систему.

Связи смежных курсов позволяют глубже проникнуть в сущность предметов, раскрыть, например, причинно-следственные, физико-химические связи в биологических процессах. Это дает возможность полнее показать историю науки, методы и достижения современной науки, в которой усиливаются интеграция знаний и системный подход к познанию. Укрепляя стимулирующее содержание уроков, межпредметные связи активизируют и процесс усвоения знаний, основанный на их постоянном применении. Становится наглядной практическая нужность и полезность знаний по всем предметам. Осознание нужности знаний надежно укрепляет интерес к их углублению и расширению. Сам процесс познания, обогащенный межпредметными связями, активизируя мыслительные процессы, служит источником устойчивого" интереса школьников. Межпредметные связи усиливают обобщающий характер содержания учебного материала, который требует изменения и методов обучения.

Межпредметные связи приводят в действие все стимулы познавательного интереса, связанные с учебной деятельностью: вносят проблемность, элементы исследования и творчества, разнообразят формы самостоятельной работы, побуждают к овладению новыми умениями. Преобразуя методы обучения, МПС оказывают влияние на изменение и его организационных форм. Возникает потребность в коллективных формах организации учебной работы, которые наилучшим образом обеспечивают решение межпредметных проблем, создавая условия для проявления знаний и интересов учащихся по другим предметам. При этом возможен успех для каждого.

Успешность деятельности, как известно, важнейший побудитель активности и интереса к ней. В коллективных формах учебной работы активно действуют стимулы познавательного интереса, связанные с отношениями между участниками учебного процесса: эмоциональный тонус, доверие к познавательным возможностям учащихся, взаимная поддержка в деятельности, элементы соревнования, поощрение и другие (Г. И. Щукина).

В процессе формирования познавательных интересов учащихся межпредметные связи (содержательные, операционно - деятельностные, организационно - методические) выполняют многоплановые функции. Прежде всего, они выступают как стимул интересов учащихся к урокам, преломляясь во всех других положительных стимулах, идущих от содержания, деятельности и отношений. Учебная деятельность с опорой на межпредметные связи вызывает непосредственный интерес к урокам. Осуществляясь систематически, они становятся условием формирования устойчивых познавательных интересов школьников. Такие умения формируются на основе установления межпредметных связей, когда учитель предлагает задачи типа «дать критику», «доказать», «обосновать», «аргументировать вывод» и т. п. Оценочный фактор в познании стимулирует интерес и активность учащихся.

Итак, обучение на основе разносторонних межпредметных связей активно формирует устойчивые широкие мировоззренческие познавательные интересы, что особенно ценно для всестороннего развития личности старшеклассника.

Мировоззренческая направленность познавательных интересов — это устойчивое стремление школьника к пониманию и обоснованию существенных связей, объясняющих отношения «личность и общество», «природа и общество», «человек и труд». Процесс формирования мировоззренческой направленности познавательных интересов включает этапы:

  1. пробуждение интереса и желания опираться на межпредметные связи при усвоении общепредметных мировоззренческих идей с помощью элементов проблемности;
  2. развитие и расширение интереса к усвоению мировоззренческих идей, формирование познавательной самостоятельности при решении межпредметных задач;
  3. укрепление и углубление интереса к мировоззренческим проблемам в процессе постоянно развиваемой активности и самостоятельной деятельности учащихся (система творческих работ и внеклассной работы межпредметного содержания).

Развитие познавательной самостоятельности старшеклассников в деятельности на основе межпредметных связей происходит в тесной взаимосвязи с формированием мировоззренческих, ценностных ориентаций личности, регулирующих ее социальную активность.

Средства реализации межпредметных связей могут быть различны:

  • вопросы межпредметного содержания: направляющие деятельность школьников на воспроизведение ранее изученных в других учебных курсах и темах знаний и их применение при усвоении нового материала.
  • межпредметные задачи, которые требуют подключения знаний из различных предметов или составлены на материале одного предмета, но используемые с определенной познавательной целью в преподавании одного другого предмета. Они способствуют более глубокому и осмысленному усвоению программного материла, совершенствованию умений выявить причинно-следственные связи между явлениями.
  • домашнее задание межпредметного характера - постановка вопросов на размышление, подготовка сообщений, рефератов, изготовление наглядных пособий, составление таблиц, схем, кроссвордов, требующих знаний межпредметного характера.
  • межпредметные наглядные пособия - обобщающие таблицы, схемы, диаграммы, плакаты. Они позволяют учащимся наглядно увидеть совокупность знаний из разных предметов, раскрывающую вопросы межпредметного содержания.
  • химический эксперимент - если предметом его являются биологические объекты и химические явления, происходящие в них.

Использование межпредметных связей вызвало появление новых форм организации учебного процесса: урок с межпредметными связями, комплексный семинар, комплексная экскурсия, межпредметная экскурсия и др.

Уроки с межпредметным содержанием могут быть следующих видов: урок-лекция; урок-семинар; урок-конференция; урок-ролевая игра; урок-консультация и др.

Необходимость межпредметных связей в обучении бесспорна. Последовательное и систематическое их осуществление значительно усиливает эффективность учебно-воспитательного процесса, формирует диалектический способ мышления учащихся. К тому же межпредметные связи - непременное дидактическое условие развития у них интереса к знаниям основ наук, в том числе и естественных.

ЛИТЕРАТУРА

1. Данилюк Д.Я. Учебный предмет как интегрированная система / Д.Я. Данилюк // Педагогика. - 1997. - № 4. - С. 24 - 28.
2. Ильченко В. Р. Перекрестки физики, химии и биологии. - М.: Просвещение, 1986.
3. Максимова В. Н. Межпредметные связи и совершенствование процесса обучения. - М.: Просвещение, 1984. -143с.
4. Максимова В. Н. Межпредметные связи в учебно-воспитательном процессе средней школе. - М.: Просвещение, 1986.

Новикова Ирина Петровна
учитель химии
МОУ Совхозная сош
Тамбовский район