Какая кислота сильнее хлорная или азотная. Хлор и его соединения. Элементы vi a группы

ОПРЕДЕЛЕНИЕ

Хлорная кислота представляет собой бесцветную гигроскопичную легкоподвижную жидкость (строение молекулы показано на рис. 1), которая разлагается при умеренном нагревании или при стоянии.

Очень чувствительная к примесям. Неограниченно смешивается с водой. Сильная кислота. Концентрированные растворы маслообразны. Перегоняется в вакууме (72%-ный раствор, температура кипения 111 o С). Проявляет свойства слабого окислителя в разбавленном и сильного окислителя в концентрированном растворе при нагревании.

Рис. 1. Строение молекулы хлорной кислоты.

Таблица 1. Физические свойства хлорной кислоты.

Получение хлорной кислоты

Свободная хлорная кислота может быть получена при действии серной кислоты на перхлорат калия:

KClO 4 + H 2 SO 4 = HClO 4 + KHSO 4 .

Химические свойства хлорной кислоты

Хлорная кислота в водном растворе диссоциирует на ионы:

HClO 4 ↔ H + + ClO 4 — .

Если нагревать хлорную кислоту с оксидом фосфора (V), отнимающим от неё воду, то образуется оксид хлора (VII), или хлорный ангидрид Cl 2 O 7:

2HClO 4 + P 2 O 5 = 2HPO 3 + Cl 2 O 7 .

Хлорная кислота растворяет серебро, золото и металлы платиновой группы:

В реакциях нейтрализации со щелочами хлорная кислота образует соли - перхлораты:

HClO 4 + NaOH dilute = NaClO 4 + H 2 O;

HClO 4 (dilute, cold) + KOH = KClO 4 + H 2 O.

Применение хлорной кислоты

Хлорная кислота нашла ограниченное применение в химическом анализе, в частности в аналитической химии при получении перхлоратов.

Примеры решения задач

ПРИМЕР 1

Задание Какая масса перхлората серебра образуется при растворении чистого металла в растворе хлорной кислоты (230 г 15%-ный)?
Решение Запишем уравнение реакции взаимодействия хлорной кислоты с серебром, в результате которого происходит образование перхлората серебра:

3HClO 4 + 2Ag = 2AgClO 4 + HClO 3 + H 2 O.

Найдем массу хлорной кислоты в растворе:

ω = m solute / m solution × 100%;

m solute = ω / 100% × m solution ;

m solute (HClO 4) = ω (HClO 4) / 100% × m solution ;

m solute (HClO 4) = 15 / 100% × 230 = 34,5 г.

Рассчитаем количество моль хлорной кислоты (молярная масса равна 100,5 г/моль):

n(HClO 4) = m (HClO 4) / M (HClO 4);

n (HClO 4) = 34,5 / 100,5 = 0,34 моль.

Согласно уравнению реакции n (HClO 4) : n (AgClO 4) = 3: 2. Значит,

n(AgClO 4) = 2/3 × n(HClO 4) = 2/3 × 0,34 = 0,23моль.

Тогда масса образовавшегося перхлората серебра будет равна (молярная масса - 207 г/моль):

m (AgClO 4) = n (AgClO 4)× M (AgClO 4);

m (AgClO 4) = 0,23× 207 = 47,61г.

Ответ Масса перхлората серебра равна 47,61 г.

Структурная формула

Истинная, эмпирическая, или брутто-формула: C 4 H 4 O

Химический состав Хлорной кислоты

Молекулярная масса: 100,457

Хлорная кислота HClO 4 - одноосновная кислота, одна из самых сильных (в водном растворе, pK = ~ -10), безводная - исключительно сильный окислитель, так как содержит хлор в высшей степени окисления +7.

Свойства

Физические свойства

Бесцветная летучая жидкость, сильно дымящая на воздухе, в парах мономерна. Безводная хлорная кислота очень реакционноспособна и неустойчива. Жидкая HClO 4 частично димеризована, для неё характерна равновесная автодегидратация: 3HClO 4 ↔ H 3 O + + ClO 4 - + Cl 2 O 7

Химические свойства

Взрывоопасна. Хлорную кислоту и её соли (перхлораты) применяют как окислители. Хлорная кислота, как одна из самых сильных , растворяет золото и платиновые металлы, а в реакции с серебром образует хлорноватую кислоту:
3HClO 4 + 2Ag = 2AgClO 4 + HClO 3 + H 2 O
Неметаллы и активные металлы восстанавливают хлорную кислоту до хлороводорода
8As + 5HClO 4 + 12H 2 O = 8H 3 AsO 4 + 5HCl (данная реакция используется в металлургии для очистки руд)
Перхлорат йода в лаборатории получают при обработке раствора йода в безводной хлорной кислоте озоном:
I 2 + 6HClO 4 + O 3 = 2I(ClO 4) 3 + 3H 2 O
Являясь крайне сильной неустойчивой , хлорная кислота разлагается:
4HClO 4 = 4ClO 2 + 3O 2 + 2H 2 O
Хлорная кислота хорошо растворима во фтор- и хлорорганических растворителях, таких, как CF 3 COOH, CHCl 3 , CH 2 Cl 2 и др. Смешивание с растворителями, проявляющими восстановительные свойства, может привести к воспламенению и взрыву. С водой хлорная кислота смешивается в любых соотношениях и образует ряд гидратов HClO 4 ×nH 2 O (где n = 0,25…4). Моногидрат HClO 4 H 2 O имеет температуру плавления +50 о С. Концентрированные растворы хлорной кислоты, в отличие от безводной кислоты, обладают маслянистой консистенцией. Водные растворы хлорной кислоты устойчивы, имеют низкую окислительную способность. Хлорная кислота с водой образует азеотропную смесь, кипящую при 203 °C и содержащую 72 % хлорной кислоты. Растворы хлорной кислоты в хлорсодержащих углеводородах являются сверхкислотами (суперкислотами). Хлорная кислота является одной из сильнейших неорганических кислот, в её среде даже кислотные соединения ведут себя как основания, присоединяя протон и образуя катионы ацилперхлоратов: P(OH) 4 + ClO 4 - , NO 2 + ClO 4 - .
При слабом нагревании при пониженном давлении смеси хлорной кислоты с фосфорным ангидридом, отгоняется бесцветная маслянистая жидкость - хлорный ангидрид:
2HClO 4 + P 4 O 10 → Cl 2 O 7 + H 2 P 4 O 11
хлорной кислоты называются перхлоратами.

Получение

  • Водные растворы хлорной кислоты получают электрохимическим окислением соляной кислоты или хлора, растворённых в концентрированной хлорной кислоте, а также обменным разложением перхлоратов натрия или калия сильными неорганическими кислотами.
  • Безводная хлорная кислота образуется при взаимодействии перхлоратов натрия или калия с концентрированной серной кислотой, а также водных растворов хлорной кислоты с олеумом: KClO 4 + H 2 SO 4 → KHSO 4 + HClO 4

Применение

  • Концентрированные водные растворы хлорной кислоты широко используются в аналитической химии, а также для получения перхлоратов.
  • Хлорная кислота применяется при разложении сложных руд, при анализе минералов, а также в качестве катализатора.
  • Соли хлорной кислоты: перхлорат калия малорастворим в воде , применяется в производстве взрывчатых веществ, перхлорат магния (ангидрон) - осушитель.
Безводную хлорную кислоту нельзя длительно хранить и перевозить, так как при хранении в обычных условиях она медленно разлагается, окрашивается оксидами хлора, образующимися при её разложении, и может самопроизвольно взрываться. Зато её водные растворы вполне устойчивы.

15.1. Общая характеристика галогенов и халькогенов

Галогены ("рождающие соли") – элементы VIIA группы. К ним относятся фтор, хлор, бром и йод. В эту же группу входит и неустойчивый, а потому не встречающийся в природе астат. Иногда к этой группе относят и водород.
Халькогены ("рождающие медь") – элементы VIA группы. К ним относятся кислород, сера, селен, теллур и практически не встречающийся в природе полоний.
Из восьми существующих в природе атомов элементов этих двух групп наиболее распространены атомы кислорода (w = 49,5 %), за ним по распространенности следуют атомы хлора (w = 0,19 %), далее – серы (w = 0,048 %), затем – фтора (w = 0,028 %). Атомов остальных элементов в сотни и тысячи раз меньше. Кислород вы уже изучали в восьмом классе (гл. 10), из остальных элементов наиболее важными являются хлор и сера – с ними вы и познакомитесь в этой главе.
Орбитальные радиусы атомов галогенов и халькогенов невелики и лишь у четвертых атомов каждой группы приближаются к одному ангстрему. Это приводит к тому, что все эти элементы, представляют собой элементы, образующие неметаллы и только теллур и йод проявляют некоторые признаки амфотерности.
Общая валентная электронная формула галогенов – ns 2 np 5 , а халькогенов – ns 2 np 4 . Маленькие размеры атомов не позволяют им отдавать электроны, напротив, атомы этих элементов склонны их принимать, образуя однозарядные (у галогенов) и двухзарядные (у халькогенов) анионы. Соединяясь с небольшими атомами, атомы этих элементов образуют ковалентные связи. Семь валентных электронов дают возможность атомам галогенов (кроме фтора) образовывать до семи ковалентных связей, а шесть валентных электронов атомов халькогенов – до шести ковалентных связей.
В соединениях фтора – самого электроотрицательного элемента – возможна только одна степень окисления, а именно –I. У кислорода, как вы знаете, максимальная степень окисления +II. У атомов остальных элементов высшая степень окисления равна номеру группы.

Простые вещества элементов VIIA группы однотипны по строению. Они состоят из двухатомных молекул. При обычных условиях фтор и хлор – газы, бром – жидкость, а йод – твердое вещество. По химическим свойствам эти вещества сильные окислители. Из-за роста размеров атомов с увеличением порядкового номера их окислительная активность снижается.
Из простых веществ элементов VIA группы при обычных условиях газообразны только кислород и озон, состоящие из двухатомных и трехатомных молекул, соответственно; остальные – твердые вещества. Сера состоит из восьмиатомных циклических молекул S 8 , селен и теллур из полимерных молекул Se n и Te n . По своей окислительной активности халькогены уступают галогенам: сильным окислителем из них является только кислород, остальные же проявляют окислительные свойства в значительно меньшей степени.

Состав водородных соединений галогенов (НЭ) полностью отвечает общему правилу, а халькогены, кроме обычных водородных соединений состава H 2 Э, могут образовывать и более сложные водородные соединения состава Н 2 Э n цепочечного строения. В водных растворах и галогеноводороды, и остальные халькогеноводороды проявляют кислотные свойства. Их молекулы – частицы-кислоты. Из них сильными кислотами являются только HCl, HBr и HI.
Для галогенов образование оксидов нехарактерно, большинство из них неустойчиво, однако высшие оксиды состава Э 2 О 7 известны для всех галогенов (кроме фтора, кислородные соединения которого не являются оксидами). Все оксиды галогенов – молекулярные вещества, по химическим свойствам – кислотные оксиды.
В соответствии со своими валентными возможностями халькогены образуют два ряда оксидов: ЭО 2 и ЭО 3 . Все эти оксиды кислотные.

Гидроксиды галогенов и халькогенов представляют собой оксокислоты.

Составьте сокращенные электронные формулы и энергетические диаграммы атомов элементов VIA и VIIA групп. Укажите внешние и валентные электроны.

Хлор самый распространенный, а потому и важнейший из галогенов.
В земной коре хлор встречается в составе минералов: галита (каменной соли) NaCl, сильвина KCl, карналлита KCl·MgCl 2 ·6H 2 O и многих других. Основной промышленный способ получения – электролиз хлоридов натрия или калия.

Простое вещество хлор – газ зеленоватого цвета с едким удушающим запахом. При –101 °С конденсируется в желто-зеленую жидкость. Хлор весьма ядовит, во время первой мировой войны его даже пытались использовать в качестве боевого отравляющего вещества.
Хлор – один из самых сильных окислителей. Он реагирует с большинством простых веществ (исключение: благородные газы, кислород, азот, графит, алмаз и некоторые другие). В результате образуются галогениды:
Cl 2 + H 2 = 2HCl (при нагревании или на свету);
5Cl 2 + 2P = 2PCl 5 (при сжигании в избытке хлора);
Cl 2 + 2Na = 2NaCl (при комнатной температуре);
3Cl 2 + 2Sb = 2SbCl 3 (при комнатной температуре);
3Cl 2 + 2Fe = 2FeCl 3 (при нагревании).
Кроме того хлор может окислять и многие сложные вещества, например:
Cl 2 + 2HBr = Br 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + 2HI = I 2 + 2HCl (в газовой фазе и в растворе);
Cl 2 + H 2 S = 2HCl + S (в растворе);
Cl 2 + 2KBr = Br 2 + 2KCl (в растворе);
Cl 2 + 3H 2 O 2 = 2HCl + 2H 2 O + O 2 (в концентрированном растворе);
Cl 2 + CO = CCl 2 O (в газовой фазе);
Cl 2 + C 2 H 4 = C 2 H 4 Cl 2 (в газовой фазе).
В воде хлор частично растворяется (физически), а частично обратимо реагирует с ней (см. § 11.4 в). С холодным раствором гидроксида калия (и любой другой щелочи) аналогичная реакция протекает необратимо:

Cl 2 + 2OH = Cl + ClO + H 2 O.

В результате образуется раствор хлорида и гипохлорита калия. В случае реакции с гидроксидом кальция образуется смесь CaCl 2 и Ca(ClO) 2 , называемая хлорной известью.

С горячими концентрированными растворами щелочей реакция протекает иначе:

3Cl 2 + 6OH = 5Cl + ClO 3 + 3H 2 O.

В случае реакции с KOH так получают хлорат калия, называемый бертолетовой солью.
Хлороводород – единственное водородное соединение хлора. Этот бесцветный газ с удушающим запахом хорошо растворим в воде (нацело реагирует с ней, образуя ионы оксония и хлорид-ионы (см. § 11.4). Его раствор в воде называют соляной или хлороводородной кислотой. Это один из важнейших продуктов химической технологии, так как расходуется соляная кислота во многих отраслях промышленности. Огромное значение она имеет и для человека, в частности потому, что содержится в желудочном соке, способствуя перевариванию пищи.
Хлороводород раньше получали в промышленности, сжигая хлор в водороде. В настоящее время потребность в соляной кислоте почти полностью удовлетворяется за счет использования хлороводорода, образующегося в качестве побочного продукта при хлорировании различных органических веществ, например, метана:

CH 4 + Cl 2 = CH 3 + HCl

И лаборатории хлороводород получают из хлорида натрия, обрабатывая его концентрированной серной кислотой:
NaCl + H 2 SO 4 = HCl + NaHSO 4 (при комнатной температуре);
2NaCl + 2H 2 SO 4 = 2HCl + Na 2 S 2 O 7 + H 2 O (при нагревании).
Высший оксид хлора Cl 2 O 7 – бесцветная маслянистая жидкость, молекулярное вещество, кислотный оксид. В результате реакции с водой образует хлорную кислоту HClO 4 , единственную оксокислоту хлора, существующую как индивидуальное вещество; остальные оксокислоты хлора известны только в водных растворах. Сведения об этих кислотах хлора приведены в таблице 35.

Таблица 35.Кислоты хлора и их соли

С/O
хлора

Формула
кислоты

Название
кислоты

Сила
кислоты

Название
солей

хлороводородная

хлорноватистая

гипохлориты

хлористая

хлорноватая

перхлораты

Большинство хлоридов растворимо в воде. Исключение составляют AgCl, PbCl 2 , TlCl и Hg 2 Cl 2 . Образование бесцветного осадка хлорида серебра при добавлении к исследуемому раствору раствора нитрата серебра – качественная реакция на хлорид-ион:

Ag + Cl = AgCl

Из хлоридов натрия или калия в лаборатории можно получить хлор:

2NaCl + 3H 2 SO 4 + MnO 2 = 2NaHSO 4 + MnSO 4 + 2H 2 O + Cl 2

В качестве окислителя при получении хлора по этому способу можно использовать не только диоксид марганца, но и KMnO 4 , K 2 Cr 2 O 7 , KClO 3 .
Гипохлориты натрия и калия входят в состав различных бытовых и промышленных отбеливателей. Хлорная известь также используется как отбеливатель, кроме того ее используют как дезинфицирующее средство.
Хлорат калия используют в производстве спичек, взрывчатых веществ и пиротехнических составов. При нагревании он разлагается:
4KClO 3 = KCl + 3KClO 4 ;
2KClO 3 = 2KCl + O 2 (в присутствии MnO 2).
Перхлорат калия тоже разлагается, но при более высокой температуре: KClO 4 = KCl + 2O 2 .

1.Составьте молекулярные уравнения реакций, для которых в тексте параграфа приведены ионные уравнения.
2.Составьте уравнения реакций, данных в тексте параграфа описательно.
3.Составьте уравнения реакций, характеризующих химические свойства а) хлора, б) хлороводорода (и соляной кислоты), в) хлорида калия и г) хлорида бария.
Химические свойства соединений хлора

В различны условиях устойчивы различные аллотропные модификации элемента сера. При обычных условиях простое вещество сера представляет собой желтое хрупкое кристаллическое вещество, состоящее из восьмиатомных молекул:

Это так называемая ромбическая сера (или -сера) S 8 .(Название происходит от кристаллографического термина, характеризующего симметрию кристаллов этого вещества). При нагревании она плавится (113 °С), превращаясь в подвижную желтую жидкость, состоящую из таких же молекул. При дальнейшем нагревании происходит разрыв циклов и образование очень длинных полимерных молекул – расплав темнеет и становится очень вязким. Это так называемая -сера S n . Кипит сера (445 °С) в виде двухатомных молекул S 2 , аналогичных по строению молекулам кислорода. Строение этих молекул также, как и молекул кислорода, не может быть описано в рамках модели ковалентной связи. Кроме того существуют и другие аллотропные модификации серы.
В природе встречаются месторождения самородной серы, из которых ее и добывают. Большая часть добываемой серы используется для производства серной кислоты. Часть серы используют в сельском хозяйстве для защиты растений. Очищенная сера применяется в медицине для лечения кожных заболеваний.
Из водородных соединений серы наибольшее значение имеет сероводород (моносульфан) H 2 S. Это бесцветный ядовитый газ с запахом тухлых яиц. В воде он малорастворим. Растворение физичекое. В незначительной степени в водном растворе происходит протолиз молекул сероводорода и в еще меньшей степени – образующихся при этом гидросульфид-ионов (см. приложение 13). Тем не менее, раствор сероводорода в воде называют сероводородной кислотой (или сероводородной водой).

На воздухе сероводород сгорает:

2H 2 S + 3O 2 = 2H 2 O + SO 2 (при избытке кислорода).

Качественной реакцией на присутствие сероводорода в воздухе служит образование черного сульфида свинца (почернение фильтровальной бумажки, смоченной раствором нитрата свинца:

H 2 S + Pb 2 + 2H 2 O = PbS + 2H 3O

Реакция протекает в этом направлении из-за очень малой растворимости сульфида свинца.

Кроме сероводорода, сера образует и другие сульфаны H 2 S n , например, дисульфан H 2 S 2 , аналогичный по строению пероксиду водорода. Это тоже очень слабая кислота; ее солью является пирит FeS 2 .

В соответствии с валентными возможностями своих атомов сера образует два оксида : SO 2 и SO 3 . Диоксид серы (тривиальное название – сернистый газ) – бесцветный газ с резким запахом, вызывающим кашель. Триоксид серы (старое название – серный ангидрид) – твердое крайне гигроскопичное немолекулярное вещество, при нагревании переходящее в молекулярное. Оба оксида кислотные. При реакции с водой образуют соответственно сернистую и серную кислоты .
В разбавленных растворах серная кислота – типичная сильная кислота со всеми характерными для них свойствами.
Чистая серная кислота, а также ее концентрированные растворы – очень сильные окислители, причем атомами-окислителями здесь являются не атомы водорода, а атомы серы, переходящие из степени окисления +VI в степень окисления +IV. В результате при ОВР с концентрированной серной кислотой обычно образуется диоксид серы, например:

Cu + 2H 2 SO 4 = CuSO 4 + SO 2 + 2H 2 O;
2KBr + 3H 2 SO 4 = 2KHSO 4 + Br 2 + SO 2 + 2H 2 O.

Таким образом, с концентрированной серной кислотой реагируют даже металлы, стоящие в ряду напряжений правее водорода (Cu, Ag, Hg). Вместе с тем с концентрированной серной кислотой не реагируют некоторые довольно активные металлы (Fe, Cr, Al и др.), это связано с тем, что на поверхности таких металлов под действием серной кислоты образуется плотная защитная пленка, препятствующая дальнейшему окислению. Это явление называется пассивацией .
Будучи двухосновной кислотой, серная кислота образует два ряда солей : средние и кислые. Кислые соли выделены только для щелочных элементов и аммония, существование других кислых солей вызывает сомнение.
Большинство средних сульфатов растворимо в воде и, так как сульфат-ион практически не является анионным основанием, не подвергаются гидролизу по аниону.
Современные промышленные методы производства серной кислоты основаны на получении диоксида серы (1-й этап), окислении его в триоксид (2-й этап) и взаимодействии триоксида серы с водой (3-й) этап.

Диоксид серы получают сжигая в кислороде серу или различные сульфиды:

S + O 2 = SO 2 ;
4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Процесс обжига сульфидных руд в цветной металлургии всегда сопровождается образованием диоксида серы, который и идет на производство серной кислоты.
В обычных условиях окислить кислородом диоксид серы невозможно. Окисление проводят при нагревании в присутствии катализатора – оксида ванадия(V) или платины. Несмотря на то, что реакция

2SO 2 + O 2 2SO 3 + Q

обратима, выход достигает 99 %.
Если пропускать образующуюся газовую смесь триоксида серы с воздухом через чистую воду, большая часть триоксида серы не поглощается. Чтобы предотвратить потери, газовую смесь пропускают через серную кислоту или ее концентрированные растворы. При этом образуется дисерная кислота:

SO 3 + H 2 SO 4 = H 2 S 2 O 7 .

Раствор дисерной кислоты в серной называют олеумом и часто представляют как раствор триоксида серы в серной кислоте.
Разбавляя олеум водой, можно получить как чистую серную кислоту, так и ее растворы.

1.Cоставьте структурные формулы
а) диоксида серы, б) триоксида серы,
в) серной кислоты, г) дисерной кислоты.

В нашей компании в наличии есть хлорная кислота, купить которую могут все желающие по очень выгодной стоимости. Цена на хлорную кислоту настолько привлекательна, что многие компании, фирмы, купив у нас один раз данный продукт, навсегда становятся нашими постоянными клиентами. Кроме этого, мы гарантируем, что хлорная кислота у нас реализуется высокого качества.

Производство

Безводную хлорную кислоту можно получить путем взаимодействия перхлоратов калия или натрия с крепкой серной кислотой.

Водные растворы этой кислоты можно получить электрохимическим окислением хлора или соляной кислоты, которые растворены в крепкой хлорной кислоте. Кроме этого, водный раствор образуется при обменном разложении перхлоратов калия или натрия сильными неорганическими кислотами.

Внешний вид

Хлорная кислота представляет собой летучую бесцветную жидкость, сильно дымящую в парах мономера, на воздухе.

Применение

Водные растворы хлорной кислоты высокой концентрации активно применяются для получения перхлоратов, а также в аналитической химии. Кроме этого, данный продукт используется при анализе минералов, разложении сложных руд, в качестве катализатора. Соли хлорной кислоты также нашли свое применение. Например, перхлорат магния выступает как осушитель, а перхлорат калия используется при изготовлении взрывчатых веществ.

Транспортировка

Транспортировка хлорной кислоты осуществляется всеми видами транспорта с учетом существующих правил перевозок опасных грузов.

Хранение

Хлорную кислоту необходимо хранить в помещении, изолированном от других кислот. Подобное помещение обязательно должно быть защищено от источников тепла и солнечного света, там нельзя хранить материалы, с которыми хлорная кислота могла бы вступить в реакцию. Емкости необходимо плотно закрывать.

Техника безопасности

При соприкосновении данной кислоты с определенными химическими веществами может произойти взрыв. Помимо этого, хлорная кислота может действовать как окислитель и разрушительно воздействовать при соединении с органическими веществами.

При использовании хлорной кислоты в помещении должна быть обязательно вентиляция. Люди, работающие с данным продуктом, должны иметь индивидуальные средства защиты – специальную одежду, респираторы, средства защиты глаз и лица.

Влияние на организм

В высоких концентрациях хлорная кислота может разрушать ткани тела, а при контакте со слизистыми оболочками и кожей может вызвать химические ожоги. Для того, чтобы этого не произошло, важно соблюдать необходимые меры безопасности.

Хлорная кислота представляет собой бесцветную жидкость, сильно дымящуюся и быстро испаряющуюся на воздухе. Хлор в ее составе имеет максимальную степень окисления, характерную для него, поэтому эта кислота является сильнейшим окислителем. Хорошо растворяется в органических растворителях: хлороформе, хлористом метилене, а также в воде (в любых соотношениях, образуя гидраты). Концентрированные водные растворы хлорной кислоты имеют маслянистую консистенцию. Ее соли называются перхлоратами.

Хлорная кислота - взрывоопасное вещество. При обращении с ней требуется повышенная осторожность (разрешается хранение только в плотно закрытых емкостях). Помещения, где содержатся емкости, должно хорошо проветриваться. Не допускаются перепады температуры. Это не касается ее водных растворов, они не так опасны. Их окислительная способность в несколько раз ниже, они не могут взорваться и обладают довольно хорошей устойчивостью. Нельзя смешивать хлорную кислоту с растворами-окислителями. Она считается одной из сильнейших кислот. Даже некоторые кислотные соединения, попадая в нее, ведут себя как основания.

Получение хлорной кислоты

В промышленности получают водный раствор хлорной кислоты, а также безводный аналог. Последний вид можно получить с помощью реакции перхлората калия или натрия с концентрированной серной кислотой. Существует и второй способ: взаимодействие олеума с разбавленной серной кислотой. Водный раствор серной кислоты также можно получить двумя путями: при электрохимическом окислении хлора в концентрированной соляной кислоте или же через обменное разложение перхлоратов калия и натрия.

Применение в различных отраслях промышленности

Хлорная кислота используется при разложении сложных руд на составляющие, а также в качестве катализатора. Она имеется во всех химических лабораториях, так как необходима для множества опытов по аналитической химии. Эта кислота применяется как сильный окислитель. Ее нельзя долго хранить, так как она способна самопроизвольно разлагаться, что может спровоцировать мощный взрыв.

Ее используют для получения перхлоратов. Перхлорат калия, соль, практически нерастворимая в воде, применяется при изготовлении взрывчатых веществ. Перхлорат магния, известный как ангидрон, выступает в роли осушителя, так как способен поглощать жидкости.