Физические величины характеризующие звуковое поле. Звуковое поле и его характеристики. Условия восприятия звука человеком

Пространство, в котором распространяется звук, называется звуковое поле. Характеристики звукового поля делятся на линейные и энергетические.

Линейные характеристики звукового поля:

1. звуковое давление;

2. смешение частиц среды;

3. скорость колебаний частиц среды;

4. акустическое сопротивление среды;

Энергетические характеристики звукового поля:

1. сила (интенсивность) звука.

1.Звуковое давление- это дополнительное давление, которое возникает при прохождении звука в среде. Оно является добавочным давлением к статическому давлению в среде, например, к атмосферному давлению воздушной среды. Обозначается символом Р и измеряется в единицах:

P = [ Н/м 2 ] = [ Па ].

2. Смещение частиц среды- это величина, равная отклонению условных частиц среды от положения равновесия. Обозначается символом L , измеряется в метрах (см, мм, км), L = [ м ].

3. Скорость колебания частиц среды- это скорость смещения частиц среды относительно положения равновесия под действием звуковой волны. Обозначается символом u и вычисляется как отношение смещенияL ко времени t , за которое произошло это смещение. Вычисляется по формуле:

Единица измерения [ м/с ], во внесистемных единицах см/с, мм/с, мкм/с.

4. Акустическое сопротивление– сопротивление, которое оказывает среда проходящей через неё акустической волне. Формула для вычисления:

Единица измерения: [ Па·с/м ].

На практике применяют другую формулудля определения акустического сопротивления:

Z=p*v. Z-акустическое сопротивление,

р -плотность среды, v- скорость звуковой волны в среде.

Из энергетических характеристик в медицине и фармации используется только одна - сила или интенсивность звука.

Сила (интенсивность) звука- это величина, равная количеству звуковой энергии E , проходящей за единицу времени t через единицу площади S . Обозначается символомI . Формула для вычисления: I=E/(S·t) Единицы измерения: [ Дж/с·м 2 ]. Так как Джоуль в секунду равен 1 Ватту, то

I = [ Дж/с·м 2 ] = [ Вт/м 2 ].



Психофизические характеристики звука.

Психофизика - это наука о связи объективных физических воздействий с возникающими при этом субъективными ощущениями.

С точки зрения психофизики - звук это ощущение, которое возникает в слуховом анализаторе при действии на него механических колебаний.

Психофизически звук делится на:

Тоны простые;

Тоны сложные;

Простои тон - это звук, соответствующий синусоидальному гармоническому механическому колебанию определенной частоты. График простого тона – синусоида (см. 3. Форма колебаний).

Сложный тон - это звук, состоящий из разного (кратного) количества простых тонов. График сложного тона - периодическая несинусоидальная кривая (см. 3. Форма колебаний).

Шум - это сложный звук, состоящий из большого числа простых и сложных тонов, количество и интенсивность которых всё время меняется. Шумы малой интенсивности (шум дождя) успокаивают нервную систему, шумы большой интенсивности (работа мощного электродвигателя, работа городского транспорта) утомляют нервную систему. Борьба с шумами - одна из задач медицинской акустики.

Психофизические характеристики звука:

Высота тона

Громкость звука

Тембр звука

Высота тона - это субъективная характеристика частоты слышимого звука. Чем больше частота, тем больше высота тона.

Громкость звука - это характеристика, которая зависит от частоты и силы звука. Если сила звука не меняется, то с увеличением частоты от 16 до - 1000 Гц громкость возрастает. При частоте от 1000 до 3000 Гц она остается постоянной, при дальнейшем увеличении частоты громкость уменьшается и при частотах более 16 000 Гц звук становится неслышимым.

Для измерения громкости (уровня громкости) используется единица, которую называют "фон". Громкость в фонах определяют при помощи специальных таблиц и графиков, которые называются "изоакустические кривые".

Тембр звука - это самая сложная психофизическая характеристика воспринимаемого звука. Тембр зависит от количества и интенсивности простых тонов, входящих в сложный звук. Простой тон тембра не имеет. Единиц для измерения тембра звука не существует.

Логарифмические единицы звуковых измерений.

В опытах установлено, что большим изменениям силы и частоты звука соответствует незначительные изменения громкости и высоты звука. Математически это соответствует тому, что нарастание ощущения высоты и громкости происходит по логарифмическим законам. В этой связи для звуковых измерений стали использовать логарифмические единицы. Наиболее распространёнными единицами являются "бел" и "децибел".

Бел - это логарифмическая единица, равная десятичному логарифму отношения двух однородных величин. Если этими величинами является две разных силы звука I 2 и I 1, то количество белов можно будет подсчитать по формуле:

N Б =lg(I 2 /I 1)

Если отношение I 2 к I 1 равно 10, то N Б = 1 бел, если это отношение равно 100, то 2 бела, 1000 - 3 бела. Для других отношений количество белов можно вычислить по таблицам логарифмов или при помощи микрокалькулятора.

Децибел - это логарифмическая единица, равная десятой части бела.

Обозначается дБ. Вычисляется по формуле: N дБ =10·lg(I 2 /I 1).

Децибел более удобная для практики единица и поэтому в расчетах применяется чаще.

Октава - логарифмическая единица медицинской акустики, которая применяется для характеристики интервалов частот.

Октава - это интервал (полоса) частот, в котором отношение большей частоты к меньшей равно двум.

Количественно частотный интервал в октавах равен двоичному логарифму отношения двух частот:

N ОКТ =log 2 (f 2 /f 1). Здесь N - количество октав в частотном интервале;

f 2 , f 1 - границы частотного интервала (крайние частоты).

Одна октава получается когда отношение частот равно двум: f 2 /f 1 =2.

В медицинской акустике используются стандартные частотные границы октав.

Внутри каждого интервала даются средние округлённые октавные частоты.

Частотным границам 18 - 45 Гц соответствует средняя октавная частота - 31,5 Гц;

частотным границам 45-90 Гц соответствует средняя октавная частота 63 Гц;

границам 90-180 Гц - 125 Гц.

Последовательностью средних октавных частот при измерении остроты слуха будут частоты: 31,5, 63, 125, 250, 500, 1000, 2000,4000, 8000 Гц.

Кроме бела, децибела и октавы в акустике применяется логарифмическая единица "декада". Частотный интервал в декадах равен десятичному логарифму отношения двух крайних частот:

N дек =log(f 2 /f 1).

Здесь N дек - количестве декад в частотном интервале;

f 2 , f 1 - границы частотного интервала.

Одна декада получается когда отношение крайних частот интервала будет равно десяти: f 2 /f 1 = 10.

В масштабном отношении декада равна белу, но используется только в акустике, и только для характеристики отношения частот.

Условия восприятия звука человеком.

Упругие волны, распространяющиеся в сплошных средах, на­зываются звуковыми волнами. Собственно звуком называются волны, частоты которых лежат в пределах восприятия человече­ским органом слуха. Ощущение звука возникает у человека, если на его слуховой аппарат воздействуют волны с частотой примерно от 16 до 20 000 гц. Волны с частотой, лежащей за пределами этих границ, не слышны, так как не создают слуховых ощущений. Упругие волны с частотой ниже 16 гц называются инфразвуком, а с частотой от 20 000 гц до 10 8 -10 9 гц - ультразвуком. Область физики, которая изучает способы возбуждения звуковых волн, их распространение и взаимодействие со средой, называется аку­стикой.

Полученные нами в предыдущих главах общие закономерности колебательного и волнового видов механического движения приме­нимы и к изучению акустических явлений. Однако ряд специаль­ных вопросов, связанных с особенностями восприятия звука и его технического использования, привел к выделению акустики в осо­бую область физики.

Для возникновения и распространения звуковых волн необ­ходимо наличие упругой среды (твердое тело, воздух, вода). Чтобы убедиться в этом, поместим обычный электрический звонок под воздушный колокол. Пока из-под колокола воздух не откачан, звонок отчетливо слышен. По мере откачивания воздуха звук ос­лабевает и наконец пропадает вовсе. Воздушная среда под коло­колом становится настолько разреженной, что уже не может пе­редавать звуковые колебания. Разрежение должно быть таким, чтобы молекулы газа находились друг от друга на расстояниях боль­ших, чем расстояния, на которых проявляются силы молекуляр­ного взаимодействия. Тогда молекулы, получившие от молоточка звонка некоторое количество движения, не могут передать его нап­равленно соседним молекулам, а рассеивают при случайных соуда­рениях, которыми обмениваются в тепловом движении.

Как мы видели, возникновение волн возможно, если среда ока­зывает упругое сопротивление деформациям и обладает инерцией.

Твердое тело оказывает сопротивление деформациям как продоль­ным - растяжению и сжатию, так и сдвигу. Поэтому в твердом теле звуковые волны могут быть и продольные, и поперечные. В жидкостях и газах, которые не оказывают в обычных условиях сопротивления сдвигу, звуковые волны только продольные.

Звуковые волны в среде создаются колеблющимся телом. На­пример, колебание мембраны телефона создает в прилегающем слое воздуха последовательно сжатия и разрежения, распространяющие­ся во все стороны.

Для изучения состояния среды, в которой распространяется звуковая волна, можно прибегнуть к способу, который мы исполь­зовали при изучении движения жидкости. В каждой точке про­странства, заполненного средой, находящейся в состоянии звуко­вого движения, происходят периодические изменения: а) положе­ния частицы относительно равновесного, б) скорости смещения частицы, в) величины давления (сжатия и разрежения) относительно среднего их значения, существующего в невозмущенной среде. Изменение давления в этом случае называется избыточным или звуковым давлением. Если мы представим себе, что в каждой точке среды находятся миниатюрные датчики приборов, измеряющих эти величины, то их одновременные показания дадут нам мгновенную картину состояния среды. Ряд следующих друг- за другом таких мгновенных картин даст изменение состояния среды со временем. Поскольку волновое движение периодично и во времени, и в про­странстве, то, зная скорость распространения звуковой волны" и пронаблюдав изменение указанных выше характеристик в одной точке изотропной среды с малым затуханием, можно найти их для всего пространства, занятого средой, в которой распространяются звуковые волны. Пространство, заполненное средой в состоянии звукового движения, называется звуковым полем.

Звук - слуховые ощущения человека, вызываемые механическими колебаниями упругой среды, воспринимаемые в области частот (16 Гц - 20 кГц) и при звуковых давлениях, превышающих порог слышимости человека.

Частоты колебаний среды, лежащие ниже и выше диапазона слышимости, называются соответственно инфразвуковыми и ультразвуковыми .

1. Основные характеристики звукового поля. Распространение звука

А . Параметры звуковой волны

Звуковые колебания частиц упругой среды имеют сложный характер и могут быть представлены в виде функции времени a = a(t) (рис 3.1, а ).

Рис.3.1. Колебания частиц воздуха.

Простейший процесс описывается синусоидой (рис. 3.1,б )

,

где a max - амплитуда колебаний; w = 2 p f - угловая частота; f - частота колебаний.

Гармонические колебания с амплитудой a max и частотой f называются тоном .

Сложные колебания характеризуются эффективным значением на временном периоде Т

.

Для синусоидального процесса справедливо соотношение

Для кривых другой формы отношение эффективного значения к максимальному составляет от 0 до 1.

В зависимости от способа возбуждения колебаний различают:

плоскую звуковую волну , создаваемую плоской колеблющейся поверхностью;

цилиндрическую звуковую волну, создаваемую радиально колеблющейся боковой поверхностью цилиндра;

сферическую звуковую волну , создаваемую точечным источником колебаний типа пульсирующий шар.

Основными параметрами, характеризующими звуковую волну, являются:

звуковое давление p зв, Па;

интенсивность звука I , Вт/м 2 .

длина звуковой волны l, м;

скорость распространения волны с , м/с;

частота колебаний f , Гц.

С физической точки зрения распространение колебаний состоит в передаче импульса движения от одной молекулы к другой. Благодаря упругим межмолекулярным связям движение каждой из них повторяет движение предыдущей. Передача импульса требует определенной затраты времени, в результате чего движение молекул в точках наблюдения происходит с запаздыванием по отношению к движению молекул в зоне возбуждения колебаний. Таким образом, колебания распространяются с определенной скоростью. Скорость распространения звуковой волны с - это физическое свойство среды.

Длина волны l равна длине пути, проходимого звуковой волной за один период Т:

где с - скорость звука, Т = 1/f .

Звуковые колебания в воздухе приводят к его сжатию и разрежению. В областях сжатия давление воздуха возрастает, а в областях разрежения понижается. Разность между давлением, существующем в возмущенной среде p ср в данный момент, и атмосферным давлением p атм, называется звуковым давлением (рис.3.3). В акустике этот параметр является основным, через который определяются все остальные.

p зв = p ср - p атм. (3.1)

Рис.3.3. Звуковое давление

Среда, в которой распространяется звук, обладает удельным акустическим сопротивлением z A , которое измеряется в Па*с/м (или в кг/(м 2 *с) и представляет собой отношение звукового давления p зв к колебательной скорости частиц среды u

z A = p зв /u = r* с , (3.2)

где с - скорость звука, м; r - плотность среды, кг/м 3 .

Для различных сред значения z A различны.

Звуковая волна является носителем энергии в направлении своего движения. Количество энергии, переносимой звуковой волной за одну секунду через сечение площадью 1 м 2 , перпендикулярное направлению движения, называется интенсивностью звука . Интенсивность звука определяется отношением звукового давления к акустическому сопротивлению среды Вт/м 2:

Для сферической волны от источника звука с мощностью W , Вт интенсивность звука на поверхности сферы радиуса r равна

I = W / (4p r 2),

то есть интенсивность сферической волны убывает с увеличением расстояния от источника звука. В случае плоской волны интенсивность звука не зависит от расстояния.

В . Акустическое поле и его характеристики

Поверхность тела, совершающая колебания, является излучателем (источником) звуковой энергии, который создает акустическое поле.

Акустическим полем называют область упругой среды, которая является средством передачи акустических волн. Акустическое поле характеризуется:

звуковым давлением p зв, Па;

акустическим сопротивлением z А , Па*с/м.

Энергетическими характеристиками акустического поля являются:

интенсивность I , Вт/м 2 ;

мощность звука W , Вт – количество энергии, проходящей за единицу времени через охватывающую источник звука поверхность.

Важную роль при формировании акустического поля играет характеристика направленности звукоизлучения Ф , т.е. угловое пространственное распределение образующегося вокруг источника звукового давления.

Все перечисленные величины взаимосвязаны и зависят от свойств среды, в которой распространяется звук.

Если акустическое поле не ограничено поверхностью и распространяется практически до бесконечности, то такое поле называют свободным акустическим полем.

В ограниченном пространстве (например, в закрытом помещении) распространение звуковых волн зависит от геометрии и акустических свойств поверхностей , расположенных на пути распространения волн.

Процесс формирования звукового поля в помещении связан с явлениями реверберации и диффузии .

Если в помещении начинает действовать источник звука, то в первый момент времени имеем только прямой звук. По достижении волной звукоотражающей преграды картина поля меняется из-за появления отраженных волн. Если в звуковом поле поместить предмет, размеры которого малы по сравнению с длиной звуковой волны, то практически не наблюдается искажения звукового поля. Для эффективного отражения необходимо, чтобы размеры отражающей преграды были больше или равны длине звуковой волны.

Звуковое поле, в котором возникает большое количество отраженных волн с различными направлениями, в результате чего удельная плотность звуковой энергии одинакова по всему полю, называется диффузным полем .

После прекращения источником излучения звука акустическая интенсивность звукового поля уменьшается до нулевого уровня за бесконечное время. Практически считается, что звук полностью затухает, когда его интенсивность падает в 10 6 раз от уровня, существующего в момент его выключения. Любое звуковое поле как элемент колеблющейся среды обладает собственной характеристикой затухания звука – реверберацией ("послезвучание").

С . Уровни акустических величин

Человек ощущает звук в широком диапазоне звуковых давлений p зв (интенсивностей I ).

Стандартным порогом слышимости называют эффективное значение звукового давления (интенсивности), создаваемого гармоническим колебанием с частотой f = 1000 Гц, едва слышимым человеком со средней чувствительностью слуха.

Стандартному порогу слышимости соответствует звуковое давление p o =2*10 -5 Па или интенсивность звука I o =10 -12 Вт/м 2 . Верхний предел звуковых давлений, ощущаемых слуховым аппаратом человека, ограничивается болевым ощущением и принят равным p max = 20 Па и I max = 1 Вт/м 2 .

Величина слухового ощущения L при превышении звуковым давлением p зв стандартного порога слышимости определяется по закону психофизики Вебера - Фехнера:

L = q lg(p зв /p o),

где q - некоторая постоянная, зависящая от условий проведения эксперимента.

С учетом психофизического восприятия звука человеком для характеристики значений звукового давления p зв и интенсивности I были введены логарифмические величины – уровни L (с соответствующим индексом), выраженные в безразмерных единицах – децибелах , дБ, (увеличение интенсивности звука в 10 раз соответствует 1 Белу (Б) – 1Б = 10 дБ):

L p = 10 lg (p /p 0) 2 = 20 lg (p /p 0), (3.5, а )

L I = 10 lg (I /I 0). (3.5, б )

Следует отметить, что при нормальных атмосферных условиях L p =L I .

По аналогии были введены также и уровни звуковой мощности

L w = 10 lg (W /W 0), (3.5, в )

где W 0 =I 0 *S 0 =10 -12 Вт – пороговая звуковая мощность на частоте 1000 Гц, S 0 = 1 м 2 .

Безразмерные величины L p , L I , L w достаточно просто измеряются приборами, поэтому их полезно использовать для определения абсолютных значений p , I , W по обратным к (3.5) зависимостям

(3.6, а )

(3.6, б )

(3.6, в )

Уровень суммы нескольких величин определяется по их уровням L i , i = 1, 2, ..., n соотношением

(3.7)

где n - количество складываемых величин.

Если складываемые уровни одинаковы, то

L = L + 10 lg n .

Звук - психофизиологическое ощущение, вызы­ваемое механическими колебаниями частиц упругой среды. Звуковым колебаниям соответствует область частот в интервале 20...20 000 Гц. Колебания с часто­той меньше 20 Гц называют инфразвуковыми , а боль­ше 20 000 Гц - ультразвуковыми . Воздействие на человека инфразвуковых колебаний вызывает непри­ятные ощущения. В природе инфразвуковые колеба­ния могут возникать при волнениях моря, колебани­ях земной поверхности. Ультразвуковые колебания используются для лечебных целей в медици­не и в радиоэлектронных устройств, например в фильтрах. Возбуждение звука вызывает колебательный про­цесс, изменяющий давление в упругой среде, в кото­рой образуются чередующиеся слои сжатия и разре­жения , распространяющиеся от источника звука в виде звуковых волн. В жидкой и газообразной средах час­тицы среды колеблются относительно положения рав­новесия в направлении распространения волны, т.е. волны являются продольными. В твердых телах распространяются поперечные волны, так как частицы среды колеблются в направлении, перпендикулярном линии распространения волны. Пространство, в котором происходит распростра­нение звуковых волн, называют звуковым полем . Раз­личают свободное звуковое поле, когда влияние ог­раждающих поверхностей, отражающих звуковые вол­ны, мало, и диффузное звуковое поле, где в каждой точке звуковая мощность на единицу площа­ди одинакова во всех направлениях. Распространение волн в звуковом поле происходит с определенной скоростью, которая называется скоро­стью звука . Формула (1.1)

с = 33l√Т/273, где Т - температура по шкале Кельвина.

В расчетах принимается с = 340 м/с, что приблизительно соответствует температуре 17°С при нормальном атмосферном давлении. Поверхность, соединяющую смежные точки поля с одинаковой фазой колебания (например, точки сгу­щения или разрежения), называют фронтом волны. Наиболее часто встречаются звуковые волны со сфе­рическим и плоским фронтами волны . Фронт сфери­ческой волны имеет форму шара и образу­ется на небольшом расстоянии от источника звука, если его размеры малы по сравнению с длиной излу­чаемой волны. Фронт плоской волны имеет форму плоскости, перпендикулярной направлению распрос­транения звуковой волны (звуковому лучу). Волны с плоским фронтом образуются на больших по сравне­нию с длиной волны расстояниях от источника звука. Звуковое поле характеризуется звуковым давлени­ем , колебательной скоростью , интенсивностью звука и плотностью звуковой энергии .



Звуковое давление - это разность между мгновен­ным значением давления р ам в точке среды при про­хождении через нее звуковой волны и атмосферным давлением р ас в той же точке, т.е. р = р ас - р ам. Единица измерения звукового давления в системе СИ - ньютон на квадратный метр: 1 Н/м 2 = 1 Па (паскаль). Реальные источники звука создают даже при самых громких звуках звуковые давления в десятки тысяч раз меньше нормального атмосферного давле­ния.

Колебательная скорость представляет собой ско­рость колебаний частиц среды около своего положе­ния покоя. Колебательная скорость измеряется в мет­рах в секунду. Эту скорость не следует путать со ско­ростью звука. Скорость звука - величина постоянная для данной среды, колебательная скорость - пере­менная. Если частицы среды перемещаются по направлению распространения волны, то колеба­тельную скорость считают положительной, при обрат­ном перемещении частиц - отрицательной. Реальные источники звука даже при самых громких звуках вызывают колебательные скорости в несколько тысяч раз меньше скорости звука. Для плоской звуковой волны формула колебательной скорости имеет вид (1.2)

V = p/ρ·с, где ρ - плотность воздуха, кг/м 3 ; с - скорость звука, м/с.

Произведение ρ·с для данных атмосферных усло­вий есть величина постоянная, ее называют акусти­ческим сопротивлением .

Интенсивность звука - количество энергии, про­ходящей в секунду через единицу площади, перпен­дикулярной к направлению распространения звуко­вой волны. Интенсивность звука измеряется в ваттах на метр квадратный (Вт/м 2).

Плотность звуковой энергии есть количество зву­ковой энергии, находящейся в единице объема звуко­вого поля: ε = J/c.

4. Контрольные вопросы



Глоссарий

Литература

Лекция 6 ЗАЩИТА ОТ ШУМА

Среди основных чувств человека слух и зрение играют важнейшую роль - позволяют человеку владеть звуковыми и зрительными информационными полями.

Даже беглый анализ системы человек – машина – окружающая среда дает основание считать одной из приоритетнейших проблем взаимодействия человека с окружающей средой, особенно на локальном уровне (цех, участок), проблему шумового загрязнения среды.

Длительное воздействие шума может привести к ухудшению слуха, а в отдельных случаях – к глухоте. Шумовое загрязнение среды на рабочем месте неблагоприятно воздействует на работающих: снижается внимание, увеличивается расход энергии при одинаковой физической нагрузке, замедляется скорость психических реакций и т.п. В результате снижается производительность труда и качество выполняемой работы.

Знание физических закономерностей процесса излучения и распространения шума позволит принимать решения, направленные на снижение его негативного воздействия на человека.

Звук. Основные характеристики звукового поля. Распространение звука

Понятие звук , как правило, ассоциируется со слуховыми ощущениями человека, обладающего нормальным слухом. Слуховые ощущения вызываются колебаниями упругой среды, которые представляют собой механические колебания, распространяющиеся в газообразной, жидкой или твердой среде и воздействующие на органы слуха человека. При этом колебания среды воспринимаются как звук только в определенной области частот (16 Гц - 20 кГц) и при звуковых давлениях, превышающих порог слышимости человека.



Частоты колебаний среды, лежащие ниже и выше диапазона слышимости, называются соответственно инфразвуковыми и ультразвуковыми . Они не имеют отношения к слуховым ощущениям человека и воспринимаются как физические воздействия среды.

Звуковые колебания частиц упругой среды имеют сложный характер и могут быть представлены в виде функции времени a = a(t) (рис. 1, а ).

Рис. 1. Колебания частиц воздуха.

Простейший процесс описывается синусоидой (рис. 1, б )

,

где a max - амплитуда колебаний;

w = 2 p f - угловая частота;

f - частота колебаний.

Гармонические колебания с амплитудой a max и частотой f называются тоном.

В зависимости от способа возбуждения колебаний различают:

Плоскую звуковую волну, создаваемую плоской колеблющейся поверхностью;

Цилиндрическую звуковую волну, создаваемую радиально колеблющейся боковой поверхностью цилиндра;

Сферическую звуковую волну, создаваемую точечным источником колебаний типа пульсирующий шар.

Основными параметрами, характеризующими звуковую волну, являются:

Звуковое давление p зв, Па;

Интенсивность звука I , Вт/м 2 .

Длина звуковой волны l , м;

Скорость распространения волны с, м/с;

Частота колебаний f , Гц.

Если в сплошной среде возбудить колебания, то они расходятся во все стороны. Наглядным примером являются колебания волн на воде. С физической точки зрения распространение колебаний состоит в передаче импульса движения от одной молекулы к другой. Благодаря упругим межмолекулярным связям движение каждой из них повторяет движение предыдущей. Передача импульса требует определенной затраты времени, в результате чего движение молекул в точках наблюдения происходит с запаздыванием по отношению к движению молекул в зоне возбуждения колебаний. Таким образом, колебания распространяются с определенной скоростью. Скорость распространения звуковой волны с - это физическое свойство среды.

Звуковые колебания в воздухе приводят к его сжатию и разрежению. В областях сжатия давление воздуха возрастает, а в областях разрежения понижается. Разность между давлением, существующем в возмущенной среде p ср в данный момент, и атмосферным давлением p атм, называется звуковым давлением (рис.2). В акустике этот параметр является основным, через который определяются все остальные.

p зв = p ср - p атм.

Рис. 2. Звуковое давление

Среда, в которой распространяется звук, обладает удельным акустическим сопротивлением Z A , которое измеряется в Па*с/м (или в кг/(м 2 *с) и представляет собой отношение звукового давления p зв к колебательной скорости частиц среды u :

z A = p зв /u = r ,

где с - скорость звука, м; r - плотность среды, кг/м 3 .

Для различных сред значения Z A различны.

Звуковая волна является носителем энергии в направлении своего движения. Количество энергии, переносимой звуковой волной за одну секунду через сечение площадью 1 м 2 , перпендикулярное направлению движения, называется интенсивностью звука . Интенсивность звука определяется отношением звукового давления к акустическому сопротивлению среды Вт/м 2:

Для сферической волны от источника звука с мощностью W , Вт интенсивность звука на поверхности сферы радиуса r равна:

I = W / (4p r 2),

то есть интенсивность сферической волны убывает с увеличением расстояния от источника звука. В случае плоской волны интенсивность звука не зависит от расстояния.

6.1.1 . Акустическое поле и его характеристики

Поверхность тела, совершающая колебания, является излучателем (источником) звуковой энергии, который создает акустическое поле.

Акустическим полем называют область упругой среды, которая является средством передачи акустических волн. Акустическое поле характеризуется:

- звуковым давлением p зв, Па;

- акустическим сопротивлением Z A , Па*с/м.

Энергетическими характеристиками акустического поля являются:

- интенсивность I , Вт/м 2 ;

- мощность звука W, Вт - количество энергии, проходящей за единицу времени через охватывающую источник звука поверхность.

Важную роль при формировании акустического поля играет характеристика направленности звукоизлучения Ф , т.е. угловое пространственное распределение образующегося вокруг источника звукового давления.

Все перечисленные величины взаимосвязаны и зависят от свойств среды, в которой распространяется звук. Если акустическое поле не ограничено поверхностью и распространяется практически до бесконечности, то такое поле называютсвободным акустическим полем. В ограниченном пространстве (например, в закрытом помещении) распространение звуковых волн зависит от геометрии и акустических свойств поверхностей, расположенных на пути распространения волн.

Процесс формирования звукового поля в помещении связан с явлениями реверберации и диффузии .

Если в помещении начинает действовать источник звука, то в первый момент времени имеем только прямой звук. По достижении волной звукоотражающей преграды картина поля меняется из-за появления отраженных волн. Если в звуковом поле поместить предмет, размеры которого малы по сравнению с длиной звуковой волны, то практически не наблюдается искажения звукового поля. Для эффективного отражения необходимо, чтобы размеры отражающей преграды были больше или равны длине звуковой волны.

Звуковое поле, в котором возникает большое количество отраженных волн с различными направлениями, в результате чего удельная плотность звуковой энергии одинакова по всему полю, называется диффузным полем.

После прекращения источником излучения звука акустическая интенсивность звукового поля уменьшается до нулевого уровня за бесконечное время. Практически считается, что звук полностью затухает, когда его интенсивность падает в 10 6 раз от уровня, существующего в момент его выключения. Любое звуковое поле как элемент колеблющейся среды обладает собственной характеристикой затухания звука – реверберацией ("послезвучание").