Начальная фаза. Сдвиг фаз. Основные формулы по физике - колебания и волны Найти период и начальную фазу колебаний

Фаза колебаний (φ) характеризует гармонические колебания.
Выражается фаза в угловых единицах - радианах.

При заданной амплитуде колебаний координата колеблющегося тела в любой момент времени однозначно определяется аргументом косинуса или синуса: φ = ω 0 t .

Фаза колебаний определяет при заданной амплитуде состояние колебательной системы (значение координаты, скорости и ускоренияв) любой момент времени.

Колебания с одинаковыми амплитудами и частотами могут различаться фазами.

Отношение указывает, сколько периодов прошло от момента начала колебаний.

График зависимости координаты колеблющейся точки от фазы




Гармонические колебания можно представить как с помощью функции синуса, так и косинуса, т.к.
синус отличается от косинуса сдвигом аргумента на .



Поэтому вместо формулы

х = х m cos ω 0 t


можно для описания гармонических колебаний использовать формулу



Но при этом начальная фаза , т. е. значение фазы в момент времени t = 0, равна не нулю, а .
В разных ситуациях удобно использовать синус или косинус.

Какой формулой пользоваться при расчетах?


1. Если в начале колебаний выводят маятник из положения равновесия, то удобнее пользоваться формулой с применением косинуса.
2. Если координата тела в начальный момент была бы равна нулю, то удобнее пользоваться формулой с применением синуса х = х m sin ω 0 t , т.к. при этом начальная фаза равна нулю.
3. Если в начальный момент времени (при t - 0) фаза колебаний равна φ, то уравнение колебаний можно записать в виде х = х m sin (ω 0 t + φ) .


Сдвиг фаз


Колебания, описываемые формулами через синус и косинус, отличаются друг от друга только фазами.
Разность фаз (или сдвиг фаз) этих колебаний составляет .
Графики зависимости координат от времени для двух гармонических колебаний, сдвинутых по фазе на :
где
график 1 - колебания, совершающиеся по синусоидальному закону,
график 2 - колебания, совершающиеся по закону косинуса

При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.

Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.

Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.

Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна - это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.

Таблица формул: колебания и волны

Физические законы, формулы, переменные

Формулы колебания и волны

Уравнение гармонических колебаний:

где х - смещение (отклонение) колеблющейся величины от положения равновесия;

А - амплитуда;

ω - круговая (циклическая) частота;

α - начальная фаза;

(ωt+α) - фаза.

Связь между периодом и круговой частотой:

Частота:

Связь круговой частоты с частотой:

Периоды собственных колебаний

1) пружинного маятника:

где k - жесткость пружины;

2) математического маятника:

где l - длина маятника,

g - ускорение свободного падения;

3) колебательного контура:

где L - индуктивность контура,

С - емкость конденсатора.

Частота собственных колебаний:

Сложение колебаний одинаковой частоты и направления:

1) амплитуда результирующего колебания

где А 1 и А 2 - амплитуды составляющих колебаний,

α 1 и α 2 - начальные фазы составляющих колебаний;

2) начальная фаза результирующего колебания

Уравнение затухающих колебаний:

е = 2,71... - основание натуральных логарифмов.

Амплитуда затухающих колебаний:

где А 0 - амплитуда в начальный момент времени;

β - коэффициент затухания;

Коэффициент затухания:

колеблющегося тела

где r - коэффициент сопротивления среды,

m - масса тела;

колебательного контура

где R - активное сопротивление,

L - индуктивность контура.

Частота затухающих колебаний ω:

Период затухающих колебаний Т:

Логарифмический декремент затухания:

Связь логарифмического декремента χ и коэффициента затухания β:

Определение

Начальная фаза колебаний - это параметр, который совместно с амплитудой колебаний определяет начальное состояние колебательной системы. Величину начальной фазы задают в начальных условиях, то есть при $t=0$ c.

Рассмотрим гармонические колебания некоторого параметра $\xi $. Гармонические колебания описываются уравнением:

\[\xi =A{\cos ({\omega }_0t+\varphi)\ }\ \left(1\right),\]

где $A={\xi }_{max}$ - амплитуда колебаний; ${\omega }_0$ - циклическая (круговая) частота колебаний. Параметр $\xi $ лежит в пределах $-A\le \xi \le $+A.

Определение фазы колебаний

Весь аргумент периодической функции (в данном случае косинуса:$\ ({\omega }_0t+\varphi)$), описывающей колебательный процесс, называют фазой колебаний. Величина фазы колебаний в начальный момент времени, то есть при $t=0$, ($\varphi $)- носит название начальной фазы. Устоявшегося обозначения фазы нет, у нас начальная фаза обозначена $\varphi $. Иногда, чтобы подчеркнуть, что начальная фаза относится к моменту времени $t=0$ к букве, обозначающей начальную фазу, добавляют индекс 0, пишут, например, ${\varphi }_0.$

Единицей измерения начальной фазы является единица измерения угла - радиан (рад) или градус.

Начальная фаза колебаний и способ возбуждения колебаний

Допустим, что при $t=0$ смещение системы от положения равновесия равно ${\xi }_0$, а начальная скорость ${\dot{\xi }}_0$. Тогда уравнение (1) принимает вид:

\[\xi \left(0\right)=A{\cos \varphi =\ }{\xi }_0\left(2\right);;\] \[\ \frac{d\xi }{dt}=-A{\omega }_0{\sin \varphi =\ }{\dot{\xi }}_0\to -A{\sin \varphi =\frac{{\dot{\xi }}_0}{{\omega }_0}\ }\ \left(3\right).\]

Возведем в квадрат оба уравнения (2) и сложим их:

\[{\xi }^2_0+{\left(\frac{{\dot{\xi }}_0}{{\omega }_0}\right)}^2=A^2\left(4\right).\]

Из выражения (4) имеем:

Разделим уравнение (3) на (2), получим:

Выражения (5) и (6) показывают, что начальная фаза и амплитуда зависят от начальных условий колебаний. Это значит, что амплитуда и начальная фаза зависят от способа возбуждения колебаний. Например, если груз пруженного маятника отклоняют от положения равновесия и на расстояние $x_0$ и отпускают без толчка, тогда уравнением движения маятника является уравнение:

с начальными условиями:

При таком возбуждении колебания пружинного маятника можно описывать выражением:

Сложение колебаний и начальная фаза

Тело, совершающее колебания, способно принимать участие в нескольких колебательных процессах одновременно. В таком случае возникает необходимость выяснить, каким будет результирующее колебание.

Допустим, что два колебания с равными частотами происходят по одной прямой. Уравнением результирующих колебаний будет выражение:

\[\xi ={\xi }_1+{\xi }_2=A{\cos \left({\omega }_0t+\varphi \right),\ }\]

тогда амплитуда суммарного колебания равна:

где $A_1$; $A_2$ - амплитуды складывающихся колебаний; ${\varphi }_2;;{\varphi }_1$ - начальные фазы суммирующихся колебаний. При этом начальную фазу полученного колебания ($\varphi $) вычисляют, применяя формулу:

Уравнение траектории точки, которая принимает участие в двух взаимно перпендикулярных колебаниях с амплитудами $A_1$и $A_2$ и начальными фазами ${\varphi }_2и{\varphi }_1$:

\[\frac{x^2}{A^2_1}+\frac{y^2}{A^2_2}-\frac{2xy}{A_1A_2}{\cos \left({\varphi }_2-{\varphi }_1\right)\ }={sin}^2\left({\varphi }_2-{\varphi }_1\right)\left(12\right).\]

В случае равенства начальных фаз составляющих колебаний уравнение траектории имеет вид:

что говорит о движении точки по прямой линии.

Если разность начальных фаз складываемых колебаний составляет $\Delta \varphi ={\varphi }_2-{\varphi }_1=\frac{\pi }{2},$ уравнением траектории становится формула:

\[\frac{x^2}{A^2_1}+\frac{y^2}{A^2_2}=1\left(14\right),\]

что означает, траектория движения эллипс.

Примеры задач с решением

Пример 1

Задание. Колебания пружинного осциллятора возбуждены толчком из положения равновесия, при этом грузу сообщают мгновенную скорость, равную $v_0$. Запишите начальные условия для такого колебания и функцию $x(t)$, описывающую данные колебания.

Решение. Сообщение грузу пружинного маятника мгновенной скорости равной $v_0$ означает, что при описании его колебаний с помощью уравнения:

начальными условиями будут:

Подставим в выражение (1.1) $t=0$, имеем:

Так как $A\ne 0$, то ${\cos \left(\varphi \right)\ }=0\to \varphi =\pm \frac{\pi }{2}.$

Возьмем первую производную $\frac{dx}{dt}$ подставим момент времени $t=0$:

\[\dot{x}\left(0\right)=-A{\omega }_{0\ }{\sin \left(\varphi \right)\ }=v_0\to A=\frac{v_0}{{\omega }_{0\ }}\ \left(1.4\right).\]

Из (1.4) следует, что начальная фаза получается $\varphi =-\frac{\pi }{2}.$ Подставим, полученную начальную фазу и амплитуду в уравнение (1.1):

Ответ. $x(t)=\frac{v_0}{{\omega }_{0\ }}{\sin (\ }{\omega }_0t)$

Пример 2

Задание. Два колебания одного направления складываются. Уравнения этих колебаний имеют вид: $x_1={\cos \pi (t+\frac{1}{6})\ };;\ x_2=2{\cos \pi (t+\frac{1}{2})\ }$. Какова начальная фаза полученного колебания?

Решение. Запишем уравнение гармонических колебаний по оси X:

Преобразуем заданные в условии задачи уравнения к этому же виду:

\;;\ x_2=2{\cos \left[\pi t+\frac{\pi }{2}\right](2.2).\ }\]

Сравнивая уравнения (2.2) с (2.1) получим, что начальные фазы колебаний равны:

\[{\varphi }_1=\frac{\pi }{6};;\ {\varphi }_2=\frac{\pi }{2}.\]

Изобразим на рис.1 векторную диаграмму колебаний.

$tg\ \varphi $ суммарных колебаний можно найти из рис.1:

\ \[\varphi =arctg\ \left(2,87\right)\approx 70,9{}^\circ \]

Ответ. $\varphi =70,9{}^\circ $

Волны имеют вид

Уравнения плоской монохроматической электромагнитной

Мгновенные значения в любой точке связаны соотношением

Колеблются в одинаковых фазах, а их

Плоскости, перпендикулярной вектору скорости распростра-

Магнитного полей взаимно перпендикулярны и лежат в

Электромагнитные волны являются поперечными,

Средах определяется формулой

Фазовая скорость электромагнитных волн в различных

Волну.

Пространстве процесс и представляет собой электромагнитную

Точке к другой. Этот периодический во времени и

Распространяющихся в окружающем пространстве от одной

Взаимных превращений электрического и магнитного полей,

Электромагнитное поле, то возникает последовательность

Возбуждать с помощью колеблющихся зарядов переменное

Уравнений Максвелла для электромагнитного поля. Если

Существование электромагнитных волн вытекает из

Электромагнитные волны

Щими, будет слабым. Таким образом, осуществляется, например,

Напряжение, создаваемое на конденсаторе другими составляю-

Превышающее значение данной составляющей, в то время как

Идальных напряжений, нужной составляющей. Настроив

Сложного напряжения, равного сумме нескольких синусо-

Явление резонанса используют для выделения из

Равна величине обратной добротности контура, т. е.

Относительная ширина резонансной кривой

Добротность контура определяет остроту резонансных

Активному сопротивлению контура.

Таким образом, добротность обратно пропорциональна

С рез U

Конденсаторе может превышать приложенное напряжение, т.е.

Резонансные свойства контура характеризует доброт-

Установившийся ток в цепи с конденсатором течь не может.

Iрез LC

Совпадает с собственной частотой контура

Следовательно, резонансная частота для силы тока

Рис. 1.22

R1 < R2 < R3

  . (1.96)

При ω →0, I = 0, так как при постоянном напряжении

ность Q, которая показывает, во сколько раз напряжение на

 (1.97)

При малых затуханиях ω рез ω0 и

Q  1 (1.98)

кривых. На рис. 1.23 изображена одна из резонансных кривых

для силы тока в контуре. Частоты ω1 и ω2 соответствуют току

max I I 2 .

 

контур (посредством изменения R и C ) на требуемую частоту

, можно получить на конденсаторе напряжение в Q раз



настройка радиоприёмника на нужную длину волны.

    1 0 2

m max I

Рис. 1.7

Рис.1.23

 , (1.100)

 - скорость электромагнитных волн в вакууме.

поскольку векторы E

и H

напряжённости электрического и

нения волны, образуя правовинтовую систему (рис.1.24). При

этом векторы E

и Н

0 0   E  Н. (1.101)

cos() m Е  Е t  kx  , (1.102)

cos() m H  H t  kx  , (1.103)

где ω- частота волны, k = ω/υ = 2π/λ – волновое число, α-

Рис.1.24

Электромагнитные волны переносят энергию. Объёмная

Знаете ли Вы, что такое мысленный эксперимент, gedanken experiment?
Это несуществующая практика, потусторонний опыт, воображение того, чего нет на самом деле. Мысленные эксперименты подобны снам наяву. Они рождают чудовищ. В отличие от физического эксперимента, который является опытной проверкой гипотез, "мысленный эксперимент" фокуснически подменяет экспериментальную проверку желаемыми, не проверенными на практике выводами, манипулируя логикообразными построениями, реально нарушающими саму логику путем использования недоказанных посылок в качестве доказанных, то есть путем подмены. Таким образом, основной задачей заявителей "мысленных экспериментов" является обман слушателя или читателя путем замены настоящего физического эксперимента его "куклой" - фиктивными рассуждениями под честное слово без самой физической проверки.
Заполнение физики воображаемыми, "мысленными экспериментами" привело к возникновению абсурдной сюрреалистической, спутанно-запутанной картины мира. Настоящий исследователь должен отличать такие "фантики" от настоящих ценностей.

Релятивисты и позитивисты утверждают, что "мысленный эксперимент" весьма полезный интрумент для проверки теорий (также возникающих в нашем уме) на непротиворечивость. В этом они обманывают людей, так как любая проверка может осуществляться только независимым от объекта проверки источником. Сам заявитель гипотезы не может быть проверкой своего же заявления, так как причина самого этого заявления есть отсутствие видимых для заявителя противоречий в заявлении.

Это мы видим на примере СТО и ОТО, превратившихся в своеобразный вид религии, управляющей наукой и общественным мнением. Никакое количество фактов, противоречащих им, не может преодолеть формулу Эйнштейна: "Если факт не соответствует теории - измените факт" (В другом варианте " - Факт не соответствует теории? - Тем хуже для факта").

Максимально, на что может претендовать "мысленный эксперимент" - это только на внутреннюю непротиворечивость гипотезы в рамках собственной, часто отнюдь не истинной логики заявителя. Соответсвие практике это не проверяет. Настоящая проверка может состояться только в действительном физическом эксперименте.

Эксперимент на то и эксперимент, что он есть не изощрение мысли, а проверка мысли. Непротиворечивая внутри себя мысль не может сама себя проверить. Это доказано Куртом Гёделем.